DOI QR코드

DOI QR Code

Effects of supplementation cysteine-coated Fe3O4 nanoparticles compared to FeSO4, on reproductive performance in male quail

  • Abdolvand, Esmail (Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan) ;
  • Farzinpour, Amjad (Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan) ;
  • Vaziry, Asaad (Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan)
  • Received : 2018.10.14
  • Accepted : 2020.06.11
  • Published : 2020.07.25

Abstract

Iron has a crucial role in growth as part of metalo-proteins like haemoglobin or myoglobin, enzymes; they are also involved in energetic reactions. Iron plays a vital role in fertility. At high doses, Iron has a harmful consequence on the reproductive system, which can be strongly reflected the final stage of spermatogenesis. Nutritional products are claiming to use nanotechnology and it is important to recognize the potential toxicity of nano-sized nutrients. Recently iron nanoparticles were proposed as a food additive for poultry. The objective of this study was to investigate the effects of L-cystein coated iron oxide nanoparticles on reproductive performance in male quails. The results of Fourier Transform Infrared Spectrometer, Alternating Gradient Force Magnetometer and Scaning Electron Microscopy showed that iron oxide nanoparticles was produced and have been coated with L-cycstein (Fe3O4-Cys NPs). A total of 100 one-week-old quail chicks were randomly placed to five groups of five replicates. Four quails (two male and two females) were raised in an individual cage for each replicate. The five experimental treatment diets consisted; negative control diet, with no Iron supplementation; positive control diet supplemented with 60 mg/kg of Fe3O4; treatment diets supplemented with 0.6, 6 and 60 mg/kg of L-cystein coated iron oxide nanoparticles. The hemoglobin, Red blood cell, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, gonadal somatic index, daily sperm production, total testicular sperm and sperm viability of the male quails that were fed with diet supplemented by 0.6 mg/kg of Fe3O4-Cys NPs were improved as compare with negative control. This study showed that not only the use of the Fe3O4-Cys nanoparticles had no side effects but also it can be used as a feed additive to improve the reproductive performance in male quails.

Keywords

Acknowledgement

This work was supported by the University of Kurdistan.

References

  1. Ahamed, M., Posgai, R., Gorey, T.J., Nielsen, M., Hussain, S.M. and Rowe, J.J. (2010), "Silver nanoparticles induced heat shock protein oxidative stress and apoptosis in Drosophila melanogaster", Toxicol. Appl. Pharmacol., 242, 263-269. https://doi.org/10.1016/j.taap.2009.10.016
  2. Aoyagi, S. and Baker, D.H. (1994), "Copper-amino acid complexes are partially protected against inhibitory effects of Lcysteine and L-ascorbic acid on copper absorption in chicks", J. Nutrit., 124(3), 388-395. https://doi.org/10.1093/jn/124.3.388
  3. Asharani, P.V., Hande, M.P. and Valiyaveettil, S. (2009), "Antiproliferative activity of silver nanoparticles", BMC. Cell. Biol., 10(1), 65. https://doi.org/10.1186/1471-2121-10-65
  4. Atmaca, G. (2004), "Antioxidant effects of sulfur-containing amino acids", Yonsei. Med. J., 45(5), 776-788. https://doi.org/10.3349/ymj.2004.45.5.776
  5. Berry, C.C., Wells, S., Charles, S. and Curtis, A.S. (2003), "Dextran and albumin derivatisediron oxide nanoparticles, influence on fibroblasts in vitro", Biomaterials, 24(25), 4551-4557. https://doi.org/10.1016/S0142-9612(03)00237-0
  6. Bogunia-Kubik, K. and Sugisaka, M. (2002), "From molecular biology to nanotechnology and nanomedicine", Biosystems, 65(2-3), 123-138. https://doi.org/10.1016/S0303-2647(02)00010-2
  7. Carriquiriborde, P., Handy, R.D. and Davies, S.J. (2004), "Physiological modulation of iron metabolism in rainbow trout (Oncorbynchus mykiss) fed low and high iron diets", J. Experim. Biol., 207(1), 75-86. https://doi.org/10.1242/jeb.00712
  8. Clulow, J. and Jones, R.C. (1982), "Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail, Coturnix coturnix", J. Reprod. Fertil., 64(2), 259-266. https://doi.org/10.1530/jrf.0.0640259
  9. Crawford, R.D. (1995), "Proposed role for a combination of citric acid and ascorbic acid in the production of dietary iron overload, a fundamental cause of disease", Biochem. Molcul. Medic., 54(1), 1-11. https://doi.org/10.1006/bmme.1995.1001
  10. Dang, F., Kamada, K., Enomoto, N., Hojo, J. and Enpuku, K. (2007), "Sonochemical synthesis of the magnetite nanoparticles in aqueous solution", J. Ceramic. Soc. Japan, 115(1348), 867-872. https://doi.org/10.2109/jcersj2.115.867
  11. De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J. and Geertsma, R.E. (2008), "Particle size-dependent organ distribution of gold nanoparticles after intravenous administration", Biomaterials, 29(12), 1912-1919. https://doi.org/10.1016/j.biomaterials.2007.12.037
  12. Di Bona, K.R., Xu, Y., Gray, M., Fair, D., Hayles, H., Milad, L., Montes, A., Sherwood, J., Bao, Y. and Rasco, J.F. (2015), "Shortand long-term effects of prenatal exposure to iron oxide nanoparticles: influence of surface charge and dose on developmental and reproductive toxicity", Int. J. Molecul. Sci., 16(12), 30251-30268. https://doi.org/10.3390/ijms161226231
  13. Eghbali, M., Alavi, S.S., Asri, R.S. and Khadem, A.M. (2010), "Effects of the seminal plasma iron and lead content on semen quality of water buffalo bubalis) bulls", Vet. Res. Forum, 3, 142-148.
  14. El-Gendy, E.A., Gad, A.Y. and Mostageer, A. (2007), "Spermmediated gene transfer in poultry. The relationship with cock sperm viability", Arab. J. Biotech., 10, 1-12.
  15. Farshad, A., Khalili, B. and Fazeli, P. (2009), "The effect of different concentration of glycerol and DMSO on viability of markhoz goat spermatozoa during different freezing temperatures steps", Pakistan J. Biological. Sci., 12, 239-245. https://doi.org/10.3923/pjbs.2009.239.245
  16. Farzinpour, A. and Karashi, N. (2013), "The effects of nanosilver on egg quality traits in laying", Appl. Nanosci., 3(2), 95-99. https://doi.org/10.1007/s13204-012-0097-5
  17. Gawande, M.B., Velhinho, A., Nogueira, I.D., Ghumman, C.A.A., Teodoro, O.M.N.D. and Branco, P.S. (2012), "A facile synthesis of cysteine ferrit magnetic nanoparticles for application in multicomponent reactions - A sustainable protocol", Electr. Supple. Mater., 2(15), 6144-6169. https://doi.org/10.1039/C2RA20955A
  18. Gupta, A.K. and Curtis, A.S. (2004), "Surface modified superparamagnetic nanoparticles for drug delivery, interaction studies with human fibroblasts in culture", J. Mater. Sci. Mater. Med., 15(4), 493-496. https://doi.org/10.1023/B:JMSM.0000021126.32934.20
  19. Harland, B.F. (1989), "Dietary fibre and mineral bioavailability", Nurririun. Res. Rev., 2(1), 133-147. https://doi.org/10.1079/NRR19890011
  20. Huang, Y.L., Tseng, W.C. and Lin, T.H. (2001), "In vitro effects of metal ions ($Fe^{2+}$, $Mn^{2+}$, $Pb^{2+}$) on sperm motility and lipid peroxidation in human semen", J. Tox. Env. Health, 62(4), 259-267. https://doi.org/10.1080/009841001459414
  21. Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T. and Schlager, J.J. (2005), "In vitro toxicity of nanoparticles in BRL 3A rat liver cells", Toxicol. Vitro, 19(7), 975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  22. Kasai, K., Izumo, A., Inaba, T. and Sawada, T. (2000), "Assessment of fresh and stored duck spermatozoa quality via in vitro sperm-egg interaction assay", Theriogeno, 54(2), 283-290. https://doi.org/10.1016/S0093-691X(00)00348-4
  23. Khanna, P., Ong, C., Bay, B.H. and Baeg, G.H. (2015), "Nanotoxicity: an interplay of oxidative stress, inflammation and cell death", Nanomaterials, 5(3), 1163-1180. https://doi.org/10.3390/nano5031163
  24. Kim, G.B., Seo, Y.M., Shin, K.S., Rhee, A.R., Han, J. and Paik, I.K. (2011), "Effects of supplemental copper-methionine chelate and copper-soy proteinate on the performance, blood parameters, liver mineral content, and intestinal microflora of broiler chickens", J. Appl. Poult. Res., 20(1), 21-32. https://doi.org/10.3382/japr.2010-00177
  25. Knazicka, Z., Lukacova, J., Tvrda, E., Gren, A., Goc, Z., Massanyi, P. and Lukac, N. (2012), "In vitro assessment of iron effect on the spermatozoa motility parameters", J. Microbiol. Biotechnol. Food Sci., 2, 414-425.
  26. Lafleur, M.V.M., Woldhuis, J. and Loman, H. (1980), "Effects of sulfhydryl compounds on the radiation damage in biologically active DNA", Inter. J. Radiat. Bio. Related Studies Phys. Chem. Medic., 37(5), 493-498. https://doi.org/10.1080/09553008014550611
  27. Lankveld, D.P., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C.W., Van Eijkeren, J.C.H., Geertsma, R.E. and De Jong, W.H. (2010), "The kinetics of the tissue distribution of silver nanoparticles of different sizes", Biomater., 31(32), 8350-8361. https://doi.org/10.1016/j.biomaterials.2010.07.045
  28. Lin, M., Jones, R.C. and Blackshaw, A.W. (1990), "The cycle of the seminiferous epithelium in the Japanese quail (Coturnix coturnix japonica) and estimation of its duration", J. Reprod. Fertil., 88(2), 481-490. https://doi.org/10.1530/jrf.0.0880481
  29. Lucesoli, F. and Fraga, C.G. (1995), "Oxidative damage to lipids and DNA concurrent with decrease of antioxidants in rat testes after acute iron intoxication", Arch. Biochem. Biophys., 316(1), 567-571. https://doi.org/10.1006/abbi.1995.1076
  30. Merker, H.J., Vormann, J. and Gunther, T. (1996), "Iron-induced injury of rat testis", Andrologia, 28(5), 267-273. https://doi.org/10.1111/j.1439-0272.1996.tb02795.x
  31. Mohammadi, H., Farzinpour, A. and Vaziry, A. (2017), "Reproductive performance of breeder quails fed diets supplemented with l-cysteine-coated iron oxide nanoparticles", Reprod. Domest. Animal, 52(2), 298-304. https://doi.org/10.1111/rda.12902
  32. Mohseni Kouchesfehani, H., Kiani, S., Rostami, A.A. and Fakheri, R. (2013), "Cytotoxic effect of iron oxide nanoparticles on mouse embryonic stem cells by MTT assay", Iran. J. Toxicol., 7(21), 849-853.
  33. Morck, T.A. and Austic, R.E. (1981), "Iron requirements of white leghorn hens", Poultry. Sci., 60(7), 1497-1503. https://doi.org/10.3382/ps.0601497
  34. Morris, E.R. and Ellis, R. (1976), "Isolation of monoferric phytate from wheat bran and its biological value as an iron source to the rat", J. Nutrition, 106(6), 753-760. https://doi.org/10.1093/jn/106.6.753
  35. Motzok, I., Pennell, M.D., Davies, M.I. and Ross, H.U. (1975), "Effect of particle size on the bioavailability of reduced iron", J. Assoc. Off Anal. Chem., 58(1), 99-103.
  36. Mukwevho, E., Ferreira, Z. and Ayeleso, A. (2014), "Potential role of sulfur-containing antioxidant systems in highly oxidative environments", Molecules, 19(12), 19376-19389. https://doi.org/10.3390/molecules191219376
  37. Nikonov, I.N., Folmanis, Y.G., Folmanis, G.E., Kovalenko, L.V., Laptev, G.Y., Egorov, I.A., Fisinin, V.I. and Tananaev, I.G. (2011), "Iron Nanoparticles as a Food Additive for Poultry", Doklady Biol. Sci., 440(1), 328-331. https://doi.org/10.1134/S0012496611050188
  38. Pekas, J.V., Larsen, G.L. and Feil, V.J. (1979), "Propachlor detoxification in the small intestine: cysteine conjugation", J. Toxicol. Environ. Health, 5, 653-662. https://doi.org/10.1080/15287397909529777
  39. Rahmatollah, D., Farzinpour, A., Vaziry, A. and Sadeghi, G. (2017), "Effect of replacing dietary $FeSO_4$ with cysteine-coated $Fe_3O_4$ nanoparticles on quails", Italian J. Animal Sci., 17(1), 121-127. https://doi.org/10.1080/1828051X.2017.1345662
  40. Robertson, L., Wilson, Y.I., Lindsay, C. and Wishart, G.J. (1998), "Evaluation of semen from individual male domestic fowl by assessment of sperm, perivitelline interaction in vitro and in vivo", British. Poult. Sci., 39(2), 278-281. https://doi.org/10.1080/00071669889259
  41. Saki, A.A., Abbasinezhad, M. and Rafati, A.A. (2014), "Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens", Int. J. Nanosci. Nanotech., 10(3), 187-196.
  42. Sasanami, T., Pan, J., Doi, Y., Hisada, M., Kohsaka, T., Toriyama, M. and Mori, M. (2002), "Secretion of egg envelope protein ZPC after C-terminal proteolytic processing in quail granulosa cells", Eur. J. Biochemi., 269(8), 2223-2231. https://doi.org/10.1046/j.1432-1033.2002.02880.x
  43. Soleimany, S., Farzinpour, A., Farshad, A. and Karimi, A. (2017), "The effects of zinc oxide nanoparticles on liver, kidney and pancreatic function in Japanese quail", J. Anim. Sci. Res., 26(4), 151-166.
  44. Steele, M.G., Meldrum, W., Brillard, J.P. and Wishart, G.J. (1994), "The interaction of avian spermatozoa with the perivitelline layer in vitro and in vivo", J. Reprod. Fertil., 101(3), 599-603. https://doi.org/10.1530/jrf.0.1010599
  45. Win, M.M., Tatemoto, H., Ashizawa, K. and Nakada, T. (2006), "Effect of diethylstilbestrol administration on sperm penetration into the inner perivitelline layer of Japanese quail, Coturnix japonica", J. Poult. Sci., 43(1), 67-74. https://doi.org/10.2141/jpsa.43.67
  46. Wishart, G.J. and Palmer, F.H. (1986), "Correlation of the fertilizing ability of semen from individual male fowl with sperm motility and ATP content", British. Poult. Sci., 27(1), 97-102. https://doi.org/10.1080/00071668608416859
  47. Zanella, D., Bossi, E., Gornati, R., Bastos, C., Faria, N. and Bernardini, G. (2017), "Iron oxide nanoparticles can cross plasma membranes", Sci. Rep., 7(1), 11413. https://doi.org/10.1038/s41598-017-11535-z
  48. Zimmermann, M.B. and Hilty, F.M. (2013), "Nanocompounds of iron and zinc, their potential in nutrition", Nanoscale, 3(6), 2390-2398. https://doi.org/10.1039/C0NR00858C