자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발

Development of body position sensor device for posture correction training

  • 투고 : 2020.04.05
  • 심사 : 2020.06.21
  • 발행 : 2020.06.30

초록

최근 학생 및 사무직 종사자에게서 근골격계 질환의 발병률이 증가하고 있으며, 바른 자세의 유지 및 교정 훈련의 필요성이 요구되고 있으나, 관련 연구는 부족한 현실이다. 기존 연구에서는 의자 방석부분에 멤브레인 센서 또는 압력센서를 배치하여 무게의 편중을 보거나, 사용자를 구속하는 센서를 부착하여 체위 변환을 측정하였다. 본 연구에서는 착용편의성을 고려한 체위 변환 감지 센서 디바이스를 개발하였으며, 측정한 각도를 분석앱을 통해 확인하였다. 앉은 자세에서 체위 변환을 측정하기 위하여 경추 및 척추에 IMU 센서로 구성된 센서 디바이스를 부착한다. 두 개의 센서에서 측정되는 체위의 변화값을 각도로 변환하였으며, 각도값은 실시간으로 분석앱을 통해 보여 진다. 본 연구에서는 체위 변화에 따른 실시간 변화값의 측정 가능성과, 착용편의성, 각도 측정의 경향성을 확인해 보았다. 향후 연구에서는 보다 정밀한 각도의 연산 및 동잡음의 보정을 위한 연구를 진행해야 한다.

Recently the incidence of musculoskeletal disorders in students and office workers is increasing, and the necessity of maintaining correct posture and corrective training is required, but related research is insufficient. In the previous study, a membrane sensor or a pressure sensor was placed on the seat cushion to see the deviation of the body weight, or a sensor that restrained the user was attached to measure the position change. In this study, a sensor device for detecting a position change in consideration of wearing comfort was developed, and the measured angle was verified through an analysis app. A sensor device consisting of an IMU sensor is attached to the cervical spine and vertebra spine to measure the position transformation in the sitting position. The change value of the position measured by the two sensors was converted into an angle, and the angle value is displayed in real time through the analysis app. In this study, the possibility of measuring the real-time change value according to the change in position, the convenience of wearing, and the tendency of angle measurement were proved. Future research should proceed with more precise angle calculation and correction of motion noise.

키워드

과제정보

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임[과제번호 : 20010234).

참고문헌

  1. M. S. Kim, J. Y. Seo, Y. H. Noh, D. U. Jeong, "Implementation of cushion type posture discrimination system using FSR sensor array," Journal of the Institute of Convergence Signal Processing, vol. 20, no. 2, pp. 99-104, 2019.
  2. M. K. Song, J. Y. Kong, "Effects of sitting habits and physical activity levels on spine and pelvis deformations in school children," 2017.
  3. S. Y. Ma, S. P. Hong, H. M. Shim, J. W. Kwon, S. M. Lee, "A study on sitting posture recognition using machine learning", The Transactions of the Korean Institute of Electrical Engineers, vol. 65, no. 9, pp. 1557-1563, 2016. https://doi.org/10.5370/KIEE.2016.65.9.1557
  4. S. J. Moon, Y. S. Park, "The design and implementation of the position calibration system using sensor on u-WBAN," Journal of Korean Institute of The Intelligent System, vol. 20, no. 2, pp. 304-310, 2010. https://doi.org/10.5391/JKIIS.2010.20.2.304
  5. Y. J. Cho, K. S. Park, "Design and development of the multiple kinect sensor-based exercise pose estimation system," Journal of The Korea Institute of Information and Communication Engineering, vol. 21, no. 3, pp. 558-567, 2017. https://doi.org/10.6109/jkiice.2017.21.3.558
  6. Y. S. An, K. S. Kim, C. G. Song, "Posture guidance system using 3-axis accelerometer for scoliosis patient," Proceeding of the IEEK Conference, pp. 396-398, 2009.