Acknowledgement
This research was supported by the National Natural Science Foundation of China (No. 41502298).
References
- Auriault, J.L., Borne, L. and Chambon, R. (1985), "Dynamics of porous saturated media, checking of the generalized law of Darcy", J. Acoust. Soc. Amer., 77(5), 1641-1650. https://doi.org/10.1121/1.391962.
- Du, Y., Tang, L., Yang, L., Wang, X. and Bai, M. (2019), "Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance", Chin. J. Geotech. Eng., 41(12), 2316-2322. https://doi.org/10.11779/CJGE201912017.
- Fatahi, B., Tabatabaiefar, S. and Samali, B. (2014), "Soil-structure interaction vs site effect for seismic design of tall buildings on soft soil", Geomech. Eng., 6(3), 293-320. https://doi.org/10.12989/gae.2014.6.3.293.
- Kruse, A.M., Darrow, M.M. and Akagawa, S. (2017), "Improvements in measuring unfrozen water in frozen soils using the pulsed nuclear magnetic resonance method", J. Cold Reg. Eng., 32(1), 04017016. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000141.
- Lee, J., Kim, Y. and Choi, C. (2013), "A study for adfreeze bond strength developed between weathered granite soils and aluminum plate", J. Korean Geoenviron. Soc., 14(12), 23-30. https://doi.org/10.14481/jkges.2013.14.12.023.
- Li, J.L., Zhou, K.P., Liu, W.J. and Deng, H.W. (2016), "NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles", T. Nonferr. Metal. Soc. China, 26(11), 2997-3003. https://doi.org/10.1016/S1003-6326(16)64430-8.
- Liu, J.K., Cui, Y.H., Wang, P.C. and Lv, P. (2014), "Design and validation of a new dynamic direct shear apparatus for frozen soil", Cold Reg. Sci. Technol., 106, 207-215. https://doi.org/10.1016/j.coldregions.2014.07.010.
- Liu, J.K., Lv, P., Cui, Y.H. and Liu, J.Y. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Reg. Sci. Technol., 104, 1-6. https://doi.org/10.1016/j.coldregions.2014.04.007.
- Lyazgin, A.L., Lyashenko, V.S., Ostroborodov, S.V., Ol'shanskii, V.G., Bayasan, R.M., Shevtsov, K.P. and Pustovoit, G.P. (2004), "Experience in the prevention of frost heave of pile foundations of transmission towers under northern conditions", Power Technol. Eng., 38(2), 124-126. https://doi.org/10.1023/B:HYCO.0000036365.64731.4c.
- Mohnke, O. and Yaramanci, U. (2002), "Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing", J. Appl. Geophys., 50(1-2), 163-177. https://doi.org/10.1016/S0926-9851(02)00137-4.
- Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/gae.2019.19.5.407.
- Nishimura, S. and Wang, J. (2018), "A simple framework for describing strength of saturated frozen soils as multi-phase coupled system", Geotechnique, 69(8), 659-671. https://doi.org/10.1680/jgeot.17.P.104.
- Niu, F.J., Ma, W. and Wu, Q.B. (2011), "Thermal stability of roadbeds of the Qinghai-Tibet railway in permafrost regions and the main freezing-thawing hazards", J. Earth Sci. Environ., 33(2), 196-206. https://doi.org/10.3969/j.issn.1672-6561.2011.02.016.
- Nixon, J.F. and Morgenstern, N.R. (2011), "Thaw-consolidation tests on undisturbed fine-grained permafrost", Can. Geotech. J., 11(1), 202-214. https://doi.org/10.1139/t74-012.
- Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P. and Li, H. (2019), "A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study", Eng. Geol., 262, 105310. https://doi.org/10.1016/j.enggeo.2019.105310.
- Rist, A., Phillips, M. and Springman, S.M. (2012), "Inclinable shear box simulations of deepening active layers on perennially frozen scree slopes", Permafrost Periglac., 23(1), 26-38. https://doi.org/10.1002/ppp.1730.
- Sayles, F.H., Baker, T.H.W., Gallavres, F., Jessberger, H.L., Kinosita, S., Sadovskiy, A.V. and Vyalov, S.S. (1987), "Classification and laboratory testing of artificially frozen ground", J. Cold Reg. Eng., 1(1), 22-48. https://doi.org/10.1061/(asce)0887-381x(1987)1:1(22).
- Shi, Q.B, Yang, P. and Wang, G.L. (2016), "Experimental study on adfreezing strength of the interface between artificial frozen sand and structure", Chin. J. Rock Mech. Eng., 35(10), 2142-2151. https://doi.org/10.13722/j.cnki.jrme.2015.1511.
- Shiklomanov, N.I., Streletskiy, D.A., Swales, T.B. and Kokorev, V.A. (2017), "Climate change and stability of urban infrastructure in Russian permafrost regions: Prognostic assessment based on GCM climate projections", Geograph. Rev., 107(1), 125-142. https://doi.org/10.1111/gere.12214.
- Spaans, E.J. and Baker, J.M. (1996), "The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic", Soil Sci. Soc. Amer. J., 60(1), 13-19. https://doi.org/10.2136/sssaj1996.03615995006000010005x.
- Tan, L., Wei, C.F., Tian, H.H., Zhou, J.Z. and Wei, H.Z. (2015), "Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance", Rock Soil Mech., 36(6), 1566-1572. https://doi.org/10.16285/j.rsm.2015.06.006.
- Tang, L., Wang, K., Deng, L., Yang, G., Chen, J. and Jin, L. (2019), "Axial loading behaviour of laboratory concrete piles subjected to p A resistivity model for testing unfrozen water content of frozen soilermafrost degradation", Cold Reg. Sci. Technol., 166, 102820. https://doi.org/10.1016/j.coldregions.2019.102820.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley and Sons.
- The National Standards Compilation Group of the People's Republic of China (1999), GB/T50123-1999 Standard for Soil Test Method, China Planning Press, Beijing, China.
- Tice, A.R., Anderson, D.M. and Sterrett, K.F. (1981), "Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance", Eng. Geol., 18(1-4), 135-146. https://doi.org/10.1016/B978-0-444-42010-7.50017-7.
- Tsytovich, N.A. (1960), "Problems of frozen soil mechanics in engineering practice", Highway Res Board Special Report, (60).
- Wang, B., Liu, Z.Q., Zhao, X.D., Zhi, L. and Xiao, H.H. (2017), "Experimental study on shearing mechanical characteristics of thawing soil and structure interface under high pressure", Rock Soil Mech., 38(12), 3540-3546.
- Wang, F., Li, G., Ma, W., Wu, Q., Serban, M., Vera, S., Alexandr, F., Jiang, N. and Wang, B. (2019), "Pipeline-permafrost interaction monitoring system along the China-Russia crude oil pipeline", Eng. Geol., 254, 113-125. https://doi.org/10.1016/j.enggeo.2019.03.013.
- Wang, S., Wang, Q., Qi, J. and Liu, F. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw cycling", Geomech. Eng., 15(4), 997-1004 https://doi.org/10.12989/gae.2018.15.4.997.
- Wang, X., Li, S., Xu, Z., Hu, J., Pan, D. and Xue, Y. (2019), "Risk assessment of water inrush in karst tunnels excavation based on normal cloud model", Bull. Eng. Geol. Environ., 78(5), 3783-3798. https://doi.org/10.1007/s10064-018-1294-6.
- Wen, Z., Yu, H.H., Zhang, J.M., Dong, S.S., Ma, W., Niu, F.J., Zhao, S.P. and Yang, Z. (2013), "Experimental study on adfreezing bond strength of interface between silt and foundation of Qinghai-Tibetan transmission line", Chin. J. Geotech. Eng., 35(12), 2262-2267.
- Wen, Z., Yu, Q., Ma, W., Dong, S., Wang, D., Niu, F. and Zhang, M. (2016), "Experimental investigation on the effect of fiberglass reinforced plastic cover on adfreeze bond strength", Cold Reg. Sci. Technol., 131, 108-115. https://doi.org/10.1016/j.coldregions.2016.07.009.
- Xu, Z., Lin, P., Xing, H. and Wang, J. (2020), "Mathematical modelling of cumulative erosion ratio for suffusion in soils", Proc. Inst. Civ. Eng. Geotech. Eng., 1-11. https://doi.org/10.1680/jgeen.19.00082.
- Xu, Z.H., Huang, X., Li, S.C., Lin, P., Shi, X.S. and Wu, J. (2020), "A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave", Bull. Eng. Geol. Environ., 79(2), 1097-1111. https://doi.org/10.1007/s10064-019-01609-9.
- You, Y., Wang, J., Wu, Q., Yu, Q., Pan, X., Wang, X. and Guo, L. (2017), "Causes of pile foundation failure in permafrost regions: The case study of a dry bridge of the Qinghai-Tibet Railway", Eng. Geol., 230, 95-103. https://doi.org/10.1016/j.enggeo.2017.10.004.
- Zhou, K.P., Bin, L.I., Li, J.L., Deng, H.W. and Feng, B.I.N. (2015), "Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment", T. Nonferr. Metal. Soc. China, 25(4), 1254-1261. https://doi.org/10.1016/S1003-6326(15)63723-2.
Cited by
- Study on Dynamic Constitutive Model of Weakly Consolidated Soft Rock in Western China vol.2020, 2020, https://doi.org/10.1155/2020/8865013
- Effects of freezing and thawing on retaining wall with changes in groundwater level vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.531
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2020, https://doi.org/10.12989/gae.2021.26.3.235
- Model Test Study on Stability Factors of Expansive Soil Slopes with Different Initial Slope Ratios under Freeze-Thaw Conditions vol.11, pp.18, 2020, https://doi.org/10.3390/app11188480
- Experimental study of the frozen soil-structure interface shear strength deterioration mechanism during thawing vol.14, pp.23, 2021, https://doi.org/10.1007/s12517-021-08673-0