DOI QR코드

DOI QR Code

Reliability and risk assessment for rainfall-induced slope failure in spatially variable soils

  • Zhao, Liuyuan (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Huang, Yu (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Xiong, Min (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Ye, Guanbao (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
  • Received : 2019.09.29
  • Accepted : 2020.06.26
  • Published : 2020.08.10

Abstract

Slope reliability analysis and risk assessment for spatially variable soils under rainfall infiltration are important subjects but they have not been well addressed. This lack of study may in part be due to the multiple and diverse evaluation indexes and the low computational efficiency of Monte-Carlo simulations. To remedy this, this paper proposes a highly efficient computational method for investigating random field problems for slopes. First, the probability density evolution method (PDEM) is introduced. This method has high computational efficiency and does not need the tens of thousands of numerical simulation samples required by other methods. Second, the influence of rainfall on slope reliability is investigated, where the reliability is calculated from based on the safety factor curves during the rainfall. Finally, the uncertainty of the sliding mass for the slope random field problem is analyzed. Slope failure consequences are considered to be directly correlated with the sliding mass. Calculations showed that the mass that slides is smaller than the potential sliding mass (shallow surface sliding in rainfall). Sliding mass-based risk assessment is both needed and feasible for engineered slope design. The efficient PDEM is recommended for problems requiring lengthy calculations such as random field problems coupled with rainfall infiltration.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41831291 and 41625011) and the National Key R&D Program of China (Grant No. 2017YFC1501304).

References

  1. Cala, M. and Flisiak, J. (2001), "Slope stability analysis with FLAC and limit equilibrium methods", Proceedings of the 2nd International FLAC Symposium, Melbourne, Australia, February.
  2. Chen, J.B. and Li, J. (2009), "A note on the principle of preservation of probability and probability density evolution equation", Prob. Eng. Mech., 24, 51-59. https://doi.org/10.1016/j.probengmech.2008.01.004.
  3. Chenari, R.J. and Fatahi, B. (2019), "Physical and numerical modelling of the inherent variability of shear strength in soil mechanics", Geomech. Eng., 17(1), 31-45. https://doi.org/10.12989/gae.2019.17.1.031.
  4. Cho, S.E. (2009), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", J. Geotech. Geoenviron. Eng., 136(7), 975-984. https://doi.org/10.1061/(asce)gt.1943-5606.0000309.
  5. Cho, S.E. (2014), "Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability", Eng. Geol., 171, 11-20. https://doi.org/10.1016/j.enggeo.2013.12.015.
  6. Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. and Paudyal, P. (2008), "Predictive modelling of rainfall-induced landslide hazard in the lesser himalaya of nepal based on weights-of-evidence", Geomorphology, 102, 496-510. https://doi.org/10.1016/j.geomorph.2008.05.041.
  7. Dai, F. and Lee, C. (2001), "Frequency-volume relation and prediction of rainfall-induced landslides", Eng. Geol., 59, 253-266. https://doi.org/10.1016/s0013-7952(00)00077-6.
  8. Elkateb, T., Chalaturnyk, R. and Robertson, P.K. (2003), "An overview of soil heterogeneity: Quantification and implications on geotechnical field problems", Can. Geotech. J., 40, 1-15. https://doi.org/10.1139/t02-090.
  9. Fenton, G.A. and Griffiths, D.V. (2008), Risk Assessment in Geotechnical Engineering, John Wiley & Sons.
  10. Galanti, Y., Barsanti, M., Cevasco, A., Avanzi, G.D.A. and Giannecchini, R. (2018), "Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds", Landslides, 15, 937-952. https://doi.org/10.1007/s10346-017-0919-3.
  11. GEO-SLOPE International Ltd. (2018), Factors Controlling Rainfall-Induced Instability, Example illustrates the importance of some factors that influence the stability of a slope during rainfall. https://www.geoslope.com.
  12. Griffiths, D. and Fenton, G.A. (2004), "Probabilistic slope stability analysis by finite elements", J. Geotech. Geoenviron. Eng., 130, 507-518. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507).
  13. Griffiths, D. and Lane, P. (1999), "Slope stability analysis by finite elements", Geotechnique, 49, 387-403. https://doi.org/10.1680/geot.1999.49.3.387.
  14. Griffiths, D., Huang, J. and Fenton, G.A. (2009), "Influence of spatial variability on slope reliability using 2-d random fields", J. Geotech. Geoenviron. Eng., 135(10), 1367-1378. https://doi.org/10.1061/(asce)gt.1943-5606.0000099.
  15. Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P. (2008), "The rainfall intensity-duration control of shallow landslides and debris flows: An update", Landslides, 5, 3-17. https://doi.org/10.1007/s10346-007-0112-1.
  16. Hu, H. and Huang, Y. (2019), "A dynamic reliability approach to seismic vulnerability analysis of earth dams", Geomech. Eng., 18(6), 661-668. https://doi.org/10.12989/gae.2019.18.6.661.
  17. Huang, J., Griffiths, D. and Fenton, G.A. (2010), "System reliability of slopes by RFEM", Soils Found., 50(3), 343-353. https://doi.org/10.3208/sandf.50.343.
  18. Huang, J., Ju, N., Liao, Y. and Liu, D. (2015), "Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method", Nat. Hazards Earth Syst. Sci., 15(12), 2715-2723. https://doi.org/10.5194/nhessd-3-3487-2015.
  19. Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K. and Sloan, S. (2013), "Quantitative risk assessment of landslide by limit analysis and random fields", Comput. Geotech., 53, 60-67. https://doi.org/10.1016/j.compgeo.2013.04.009.
  20. Huang, Y. and Xiong, M. (2017), "Dynamic reliability analysis of slopes based on the probability density evolution method", Soil Dyn. Earthq. Eng., 94, 1-6. https://doi.org/10.1016/j.soildyn.2016.11.011.
  21. Huang, Y., Zhao, L., Xiong, M., Liu, C. and Lu, P. (2018), "Critical slip surface and landslide volume of a soil slope under random earthquake ground motions", Environ. Earth Sci., 77(23), 1-11. https://doi.org/10.1007/s12665-018-7974-5.
  22. Izadi, A., Jamshidi Chenari, R., Brigid, C. and Javankhoshdel, S. (2020), "Pseudo and full stochastic slope stability analyses using random limit equilibrium method (LEM)", Proceedings of the GeoCongress, Minneapolis, Minnesota, U.S.A., February.
  23. Jamshidi Chenari, R. and Alaie, R. (2015), "Effects of anisotropy in correlation structure on the stability of an undrained clay slope", Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 9, 109-123. https://doi.org/10.1080/17499518.2015.1037844.
  24. Jamshidi Chenari, R. and Behfar, B. (2017), "Stochastic analysis of seepage through natural alluvial deposits considering mechanical anisotropy", Civ. Eng. Infrastruct. J., 50(2), 233-253. https://doi.org/10.7508/ceij.2017.02.003
  25. Javankhoshdel, S., Cami, B., Mafi, R., Yacoub, T. and Bathurst, R.J. (2018), "Optimization techniques in non-circular probabilistic slope stability analysis considering spatial variability", Proceedings of the GeoEdmonton 2018, Edmonton, Alberta, Canada, September.
  26. Jiang, S.H. and Huang, J.S. (2016), "Efficient slope reliability analysis at low-probability levels in spatially variable soils", Comput. Geotech., 75, 18-27. https://doi.org/10.1016/j.compgeo.2016.01.016.
  27. Jiang, S.H., Huang, J. and Zhou, C.B. (2017a), "Efficient system reliability analysis of rock slopes based on subset simulation", Comput. Geotech., 82, 31-42. https://doi.org/10.1016/j.compgeo.2016.09.009.
  28. Jiang, S.H., Huang, J., Yao, C. and Yang, J. (2017b), "Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method", Appl. Math. Model., 47, 710-725. https://doi.org/10.1016/j.apm.2017.03.048.
  29. Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B. and Phoon, K.K. (2014), "Efficient system reliability analysis of slope stability in spatially variable soils using monte carlo simulation", J. Geotech. Geoenviron. Eng., 141(2), 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227.
  30. Johnson, B.C., Campbell, C.S. and Melosh, H.J. (2016), "The reduction of friction in long runout landslides as an emergent phenomenon", J. Geophys. Res. Earth Surf., 121, 881-889. https://doi.org/10.1002/2015jf003751.
  31. Juang, C.H., Zhang, J. and Gong, W. (2015), "Reliability-based assessment of stability of slopes", IOP Conf. Ser. Earth Environ. Sci., 26(1), 012006. https://doi.org/10.1088/1755-1315/26/1/012006.
  32. Klose, M., Damm, B. and Terhorst, B. (2015), "Landslide cost modeling for transportation infrastructures: A methodological approach", Landslides, 12(2), 321-334. https://doi.org/10.1007/s10346-014-0481-1.
  33. Lee, L.M., Gofar, N. and Rahardjo, H. (2009), "A simple model for preliminary evaluation of rainfall-induced slope instability", Eng. Geol., 108(3-4), 272-285. https://doi.org/10.1016/j.enggeo.2009.06.011.
  34. Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K. and Zhou, C.B. (2016b), "Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis", Appl. Math. Model., 40(9-10), 5216-5229. https://doi.org/10.1016/j.apm.2015.11.044.
  35. Li, D.Q., Xiao, T., Cao, Z.J., Zhou, C.B. and Zhang, L.M. (2016a), "Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation", Landslides, 13, 293-303. https://doi.org/10.1007/s10346-015-0569-2.
  36. Li, D.Q., Yang, Z.Y., Cao, Z.J., Au, S.K. and Phoon, K.K. (2017), "System reliability analysis of slope stability using generalized subset simulation", Appl. Math. Model., 46, 650-664. https://doi.org/10.1016/j.apm.2017.01.047.
  37. Li, J. and Chen, J. (2008), "The principle of preservation of probability and the generalized density evolution equation", Struct. Saf., 30, 65-77. https://doi.org/10.1016/j.strusafe.2006.08.001.
  38. Li, J. and Chen, J. (2009), Stochastic Dynamics of Structures, John Wiley & Sons.
  39. Li, L. and Chu, X. (2016), "Risk assessment of slope failure by representative slip surfaces and response surface function", KSCE J. Civ. Eng., 20(5), 1783-1792. https://doi.org/10.1007/s12205-015-2243-6.
  40. Lin, Q. and Wang, Y. (2018), "Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016", Landslides, 15(12), 2357-2372. https://doi.org/10.1007/s10346-018-1037-6
  41. Liu, L.L., Cheng, Y.M., Wang, X.M., Zhang, S.H. and Wu, Z.H. (2017), "System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty", Comput. Geotech., 89, 213-225. https://doi.org/10.1016/j.compgeo.2017.05.014.
  42. Low, B., Lacasse, S. and Nadim, F. (2007), "Slope reliability analysis accounting for spatial variation", Georisk, 1(4), 177-189. https://doi.org/10.1080/17499510701772089.
  43. Mafi, R., Javankhoshdel, S., Cami, B., Jamshidi Chenari, R. and Gandomi, A.H. (2020), "Surface altering optimisation in slope stability analysis with non-circular failure for random limit equilibrium method", Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 1-27. https://doi.org/10.1080/17499518.2020.1771739.
  44. Ozbay, A. and Cabalar, A. (2015), "FEM and LEM stability analyses of the fatal landslides at ollolar open-cast lignite mine in elbistan, turkey", Landslides, 12, 155-163. https://doi.org/10.1007/s10346-014-0537-2.
  45. Qi, X.H. and Li, D.Q. (2018), "Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes", Eng. Geol., 239, 41-49. https://doi.org/10.1016/j.enggeo.2018.03.007.
  46. Rahardjo, H., Ong, T., Rezaur, R. and Leong, E.C. (2007), "Factors controlling instability of homogeneous soil slopes under rainfall", J. Geotech. Geoenviron. Eng., 133(12), 1532-1543. https://doi.org/10.1061/(asce)1090-0241(2007)133:12(1532).
  47. Segoni, S., Piciullo, L. and Gariano, S.L. (2018), "A review of the recent literature on rainfall thresholds for landslide occurrence", Landslides, 15(8), 1483-1501. https://doi.org/10.1007/s10346-018-0966-4.
  48. Staron, L. and Lajeunesse, E. (2009), "Understanding how volume affects the mobility of dry debris flows", Geophys. Res. Lett., 36(12). https://doi.org/10.1029/2009GL038229.
  49. Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Amer. J., 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  50. Van Tien, P., Sassa, K., Takara, K., Fukuoka, H., Dang, K., Shibasaki, T., Ha, N.D., Setiawan, H. and Loi, D.H. (2018), "Formation process of two massive dams following rainfall-induced deep-seated rapid landslide failures in the kii peninsula of Japan", Landslides, 15, 1761-1778. https://doi.org/10.1007/s10346-018-0988-y.
  51. Vanapalli, S., Fredlund, D., Pufahl, D. and Clifton, A. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
  52. Vanmarcke, E. (1983), Random Fields: Analysis and Synthesis, MIT Press.
  53. Wang, X., Wang, H. and Liang, R.Y. (2017), "A method for slope stability analysis considering subsurface stratigraphic uncertainty", Landslides, 15(5), 925-936. https://doi.org/10.1007/s10346-017-0925-5.
  54. Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J. and Gao, M. (2016), "Optimized volume models of earthquake-triggered landslides", Sci. Reports, 6(1), 29797. https://doi.org/10.1038/srep29797.
  55. Yang, K.H., Huynh, V.D.A., Nguyen, T.S. and Portelinha, F.H.M. (2018), "Numerical evaluation of reinforced slopes with various backfill-reinforcement-drainage systems subject to rainfall infiltration", Comput. Geotech., 96, 25-39. https://doi.org/10.1016/j.compgeo.2017.10.012.
  56. Yin, Y., Li, B., Wang, W., Zhan, L., Xue, Q., Gao, Y., Zhang, N., Chen, H., Liu, T. and Li, A. (2016), "Mechanism of the december 2015 catastrophic landslide at the shenzhen landfill and controlling geotechnical risks of urbanization", Engineering, 2(2), 230-249. https://doi.org/10.1016/j.eng.2016.02.005.
  57. Yu, M., Huang, Y., Xu, Q., Guo, P. and Dai, Z. (2016), "Application of virtual earth in 3d terrain modeling to visual analysis of large-scale geological disasters in mountainous areas", Environ. Earth Sci., 75(7), 563. https://doi.org/10.1007/s12665-015-5161-5.
  58. Zhang, J. and Huang, H. (2016), "Risk assessment of slope failure considering multiple slip surfaces", Comput. Geotech., 74, 188-195. https://doi.org/10.1016/j.compgeo.2016.01.011.
  59. Zhang, J., Huang, H.W., Zhang, L.M., Zhu, H.H. and Shi, B. (2014), "Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model", Eng. Geol., 168, 129-140. https://doi.org/10.1016/j.enggeo.2013.11.005
  60. Zhang, J., Zhang, L. and Tang, W.H. (2010), "Slope reliability analysis considering site-specific performance information", J. Geotech. Geoenviron. Eng. 137(3), 227-238. https://doi.org/10.1061/(asce)gt.1943-5606.0000422.
  61. Zhang, L., Zhang, L. and Tang, W. (2005), "Rainfall-induced slope failure considering variability of soil properties", Geotechnique, 55(2), 183-188. https://doi.org/10.1680/geot.55.2.183.59525.
  62. Zhu, J.Q. and Yang, X.L. (2018), "Probabilistic stability analysis of rock slopes with cracks", Geomech. Eng., 16(6), 655-667. https://doi.org/10.12989/gae.2018.16.6.655.