DOI QR코드

DOI QR Code

한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II

  • 투고 : 2020.02.12
  • 심사 : 2020.06.06
  • 발행 : 2020.07.01

초록

한국형발사체 3단은 추력기 자세제어시스템에 의해 3단 엔진 점화 시점부터 위성 분리, 위성과 충돌을 막기 위한 회피기동까지 롤 및 3축 자세제어가 수행된다. 추력기 자세제어시스템은 추력기를 작동시킬 때 추진제를 소모하므로, 적정 추진제 충전은 임무 성공에 있어 중요하다. 그러므로 한국형발사체의 비행 중 추력기 자세제어시스템의 추진제 소모량이 얼마인지 추정할 수 있는 수단이 필요하다. 본 연구에서는 추력기 자세제어시스템에서 획득할 수 있는 압력, 온도 데이터를 바탕으로 추진제 소모량을 추정할 수 있는 에너지 관계식을 개발하였다. 개발된 관계식을 검증하기 위해 On-board 시스템과 유사한 시스템을 구성하여 시험을 했고, 추진제 소모량 추정식과 증류수를 사용한 시험 결과를 비교분석하였다. 또한 오차 분석을 통해 예측 결과의 신뢰성을 판단하였다. 마지막으로 시스템 수준 운용시험의 추진제 소모 결과도 나타내었다.

Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

키워드

참고문헌

  1. Oh, S. G., Kang, S. J. and Oh, D. H.., "Hydrogen Peroxide Monopropellant Thruster for KSLV-II Reaction Control System," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 5, 2019, pp. 335-343. https://doi.org/10.5139/JKSAS.2019.47.5.335
  2. Park, E. S. and Huh, H. I., "Residual Propellant Gauging Methods for Geostationary Satellites and Recent Technology Status," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 10, 2014, pp. 870-877. https://doi.org/10.5139/JKSAS.2014.42.10.870
  3. Kim, H. S., Kim, E. H. and Lee, G. H., "Estimation of Propulsion Propellant Mass," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2004, pp. 177-180.
  4. Park, E. S. and Huh, H. I., "Statistical Uncertainty Analysis of Gas Injection PVT Method for Satellite Residual Propellant Estimation," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2015, pp. 1905-1910.
  5. Kim, I, T., Huh, H. I., Kim, J. S. and Choi, H. J., "A Study on the Gauging Method for Spacecraft in Orbit," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2001, pp. 113-116.
  6. Park, E. S., Kim, B. Y. and Huh, H. I., "Residual Propellant Estimation and Consumption Status of COMS," Proceeding of The Korean Society for Propulsion Engineers, November 2012, pp. 697- 701.
  7. Park, E. S., Park, B. G. and Huh, H. I., "Statistical Uncertainty Analysis of Thermal Mass Method for Residual Propellant Estimation," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 12, 2015, pp. 1116-1123. https://doi.org/10.5139/JKSAS.2015.43.12.1116
  8. Sutton, G. P. and Biblarz, O., Rocket Propulsion Elements, 8th Ed., Wiley Hoboken, 2010, pp. 220-221.
  9. Talyor, J. R., An Introduction to Error Analysis, University Science Books, 1997, pp. 113-120.