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Applying an accurate parametric prediction model to identify abnormal or false pressurizer water levels
(PWLs) is critical to the safe operation of marine pressurized water reactors (PWRs). Recently, deep-
learning-based models have proved to be a powerful feature extractor to perform high-accuracy pre-
diction. However, the effectiveness of models still suffers from two issues in PWL prediction: the cor-
relations shifting over time between PWL and other feature parameters, and the example imbalance
between fluctuation examples (minority) and stable examples (majority). To address these problems, we
propose a cost-sensitive mechanism to facilitate the model to learn the feature representation of later
examples and fluctuation examples. By weighting the standard mean square error loss with a cost-
sensitive factor, we develop a Cost-Sensitive Long Short-Term Memory (CSLSTM) model to predict the
PWL of PWRs. The overall performance of the CSLSTM is assessed by a variety of evaluation metrics with
the experimental data collected from a marine PWR simulator. The comparisons with the Long Short-
Term Memory (LSTM) model and the Support Vector Regression (SVR) model demonstrate the effec-
tiveness of the CSLSTM.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pressurizer water level (PWL) is a crucial parameter for marine
pressurized water reactors (PWRs). Operators use it as key evidence
to comprehend reactors' operating conditions and identify their
transients [1]. However, affected by load fluctuations in marine
nuclear power equipment as well as the harsh working conditions
caused by high temperature and humidity, pressurizers are prone
to problems such as measurement faults and steam-and-water
mixture [2]. These unfavorable conditions could lead to occur-
rences of abnormal indications or false water levels, making it
challenging for operators to identify pressurizers' real water levels.
This could consequently add to the difficulty of operation and in-
crease the probability of human errors, resulting in nuclear di-
sasters such as the Three Mile Island accident [3]. Fortunately,
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relevant studies [4] shows that there is a strong internal relation
among the main parameters of PWRs. Therefore, when the water
level signal is lost, the real water level value can be reconstructed
and predicted via other easily obtained and normally displayed
feature parameters. Moreover, the predicted PWL can help with the
accurate evaluation of meter reading or the recalibration of the lost
signal.

In general, the reconstruction and prediction methods of PWL
can be classified into the following two categories [5]:

1. Mathematical-physical models, which rely on a large security
analysis program to realize parametric prediction. However, the
security analysis program needs to be modified for different
PWRs, and it is not easy to interact with actual running data [4].
As a result, such methods have demonstrated poor generality
and transfer adaptability. In addition, the more complicated the
model is, the more rounding and transfer errors tend to occur in
the calculation process, which consequently enlarges the devi-
ation between the predicted value and the actual value [5]. This
deficiency is not likely to be compensated by a simplified model,
because it cannot achieve effective forecasting accuracy.

1738-5733/© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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2. Data-driven approaches, which use machine learning models to
learn the mapping between the PWL and normal feature pa-
rameters. Such methods are able to achieve high accuracy and
strong applicability. In particular, the deep neural networks
(DNNs), as a new focus across the research community, have
proved to outperform traditional machine learning methods
(such as SVR models and BP networks) by large margins [6,7].

We are thus motivated to adopt LSTM, a DNN with temporal
characteristic, to build a PWL prediction model to track the temporal
changes of PWL. However, as LSTM models usually treat all examples
with equal importance during training, it is necessary to make some
modifications to our proposed LSTM model. Otherwise, the model is
very likely to be overwhelmed by the majority data (stable condition
examples) [8] and suffer from the correlations shifting over time
among the PWL and other feature parameters. This might seriously
undermine the model's performance and updating [9].

Considering the temporal and transient working condition fea-
tures of nuclear equipment's operating parameters, the examples
should vary in importance for training. First, training examples
appearing later in a time series are more important than previous ones
due to the temporal shifting of the correlations between parameters.
Second, volatile examples are more important than those with stable
changes as they usually contain more information than stable ones.
Therefore, we propose a cost-sensitive mechanism for training ex-
amples, which should demonstrate four properties: time series
sensitivity, fluctuation sensitivity, eternal positivity, and convergence.
Based on this mechanism, a Cost-Sensitive LSTM (CSLSTM) model is
established, which takes six parameters highly coupled with the PWL
as the feature parameters to predict and reconstruct the PWL.

With experimental data collected from a marine PWR simulator,
the comparative experiments are performed under both global
learning and local learning modes. The results show that the
CSLSTM outperforms the LSTM model and the SVR model on
multiple evaluation metrics.

The main contributions of this paper are as follows:

1. For the first time, a deep learning framework is applied to pre-
dict a nuclear power equipment parameter. We propose a novel
parameter prediction model for the PWL in an end-to-end way
based on the LSTM deep learning network.

2. Considering both temporal and fluctuation characteristics of
PWL, we introduce a cost-sensitive mechanism and establish a
CSLSTM model, which could further improve the performance
by letting the model pay more attention to the later examples
and fluctuation examples during training.

The rest of this paper is arranged as follows: Section 2 describes
the preliminary knowledge of this paper, including feature selec-
tion, data preparation and non-deep learning methods for the
prediction of nuclear power equipment parameters; Section 3 in-
troduces in detail the LSTM model, the CSLSTM model, the training
and optimization; In Section 4, we verify the effectiveness of the
CSLSTM model by comparing it with the LSTM and SVR models, and
analyze the experimental results of the time series prediction of
PWL. Finally, the conclusion of this paper is drawn in Section 5.

2. Related works
2.1. Feature selection and data preparation

Time series that affect the PWL are high-dimensional features,
which not only contain rich and useful information but also include

irrelevant or redundant features. These irrelevant and redundant
features can undermine the prediction accuracy and efficiency of

the model. Thus, selecting valuable features based on their corre-
lations with the PWL is crucial for prediction. After theoretical
analysis and simulation test, we follow Wang's practice [10] and
select six parameters highly coupled with the PWL as the model's
input features, including reactor inlet and outlet average temper-
atures, the pressure and temperature of the pressurizer, the main
pump flow of the primary circuit, and the reactor’s nuclear power.

In this study, our time series data is collected from a RELAP5
marine PWR simulator in terms of seven parameters including the
six input feature parameters and output parameter, i.e. the PWL.
Since these parameters usually have different dimensions and
magnitude orders, we normalize the raw data (Equation (1)) to
generate our experimental data set. According to the transient
process of increasing reactor power from 30% to 90%, our experi-
ments collect 3667 groups of original data sets with the time step of
1 s. After normalization, the input feature parameters are expressed
as X = [xq, Xy, -+, X3667), Where vector x; denotes the normalized
value of the six input feature parameters at moment i. The output
variable, namely the PWL, is expressed as Y = [y1, Y2, ***, ¥3667)»
where y; denotes the normalized PWL at moment i.

X - Xmin

Xmax - Xmin

X (1

2.2. PWRs parametric prediction methods

In essence, time series parametric prediction for PWRs is a kind
of regression analysis. Machine learning methods applied by recent
studies to regression analysis on PWR parameters can be mainly
classified into the following two categories, i.e., shallow neural
network approaches and non-neural-network approaches.

Before the rise of deep learning, SVR is the most successful non-
neural-network method in regression analysis owing to its effi-
ciency [5]. For example, Wang et al. studied the prediction and
reconstruction of marine nuclear power parameters via an SVR
method [10]; Liu et al. [11] applied an SVR model to predict marine
nuclear power equipment's faults and failures. Although these SVR
models have demonstrated quick learning ability and high effi-
ciency, their weaknesses are still obvious. First, except learning
support vectors, they are unable to learn the feature representation
from other examples sufficiently, which limits their generalization
and capacity. More importantly, in SVR models, data is assumed to
be independent and identically distributed, which poorly reflects
the strong temporal features of PWR parameters.

Another prevalent strategy uses shallow neural network models
such as the Auto-Associative Neural Network (AANN) and the Back-
propagation (BP) Neural Network for regression analysis [13—22].
For instance, Sameer et al. [17] and Maio et al. [18] proposed an
Auto-Associative Kernel Regression (AAKR) model to predict sig-
nals in nuclear power plants. Huang et al. [15] adopted a BP Neural
Network to predict PWR's departure from nucleate boiling ratio.
Such models have powerful nonlinear mapping ability. In theory,
and the deeper the network goes, the stronger the ability gets.
However, in practice, they tend to be easily stuck with local mini-
mum due to gradient vanishing [23].

Recently, to avoid gradient vanishing and ensure models' strong
nonlinear mapping ability, deep learning methods have emerged in
the spotlight [24]. By abstractly simulating human neurons and
their internal links, deep learning models do not have to rely on
high-quality features, so they are able to extract features from input
signals layer by layer and find deeper underlying rules [25].
Therefore, an increasing number of deep learning-based ap-
proaches are employed in nuclear engineering tasks such as nuclear
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reactor perturbation analysis [12] and anomaly detection [34]. In
particular, the Recurrent Neural Network (RNN) introduce the
concept of time series into network structure design, which makes
models more adaptative to time series data analysis. As an
improvement of RNN, the Long Short-Term Memory (LSTM) model
has shown impressive performance in regression analysis for tasks
such as traffic flow forecasting [26], power demand prediction [27],
machine translation [28], and PWR accident diagnosis [29]. Because
of its weight sharing mechanism and cyclic structure, it is able to
effectively compensate for problems such as gradient vanishing,
gradient exploding, and insufficient long-term memory capacity
[25]. Based on previous research, we extend the application of the
LSTM to nuclear power equipment parametric prediction and
provide a novel method, the CSLSTM, to predict the PWL.

3. Method and implementation
3.1. LSTM model

Different from standard neurons, RNN neurons have a cyclic
structure and can transfer the information from the previous state
to the current state. As shown in Fig. 1, when the input information
is a time series, it can be expanded into a series of mutual-
connected standard neurons.

By using a standard RNN model for an input sequence X =
[x1,X2, -+, xn] With a given length of time n, a hidden layer sequence
H = [hy, hy, -+, hy] and an output sequence Y = (1,35, -, J,) can
be obtained through iterative formulas (2) and (3). At a given time ¢,
the hidden layer sequence, the output sequence, and the input
eigenvector are defined as:

he=0(Wyp, ® Xt + Wpp ® he_q +by), t=1,2,---,n (2)
?t:Why‘ght"‘by, t:1727‘“7n (3)
xt=[XE,XE,~-,X‘é’], t=1,2,--.n (4)

Where x? denotes the value of the p™ input feature at moment t; W
represents a matrix of weight coefficients (for example, Wy, rep-
resents a matrix of weight coefficients from the input layer x to the
hidden layer h), b refers to the bias vector (for example, b;, and by
respectively denotes the bias vector in the hidden layer and the
output layer, respectively); ® means matrix multiplication; and ¢
represents an activation function such as sigmoid, tanh or ReLU
[30]. Note that the RNN has shared variables including W, h, and b at
different moments.

Although the RNN can effectively deal with nonlinear time se-
ries, the following two problems still exist. First, it cannot deal with
long delay time series due to gradient vanishing and exploding.

A
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Fig. 1. The Structure of RNN Network: (a) The RNN unit; (b) RNN sequences. x; and y,
represent the input features and output variable at moment t. h and W refer to the
hidden layer unit and the weight to be learned.

Second, to train RNN models, it is necessary to pre-determine the
length of the delay window. However, in reality, it is difficult to
automatically obtain this parameter's optimal value. This is where
the LSTM model can be applied. The LSTM model can replace the
RNN cells in the hidden layer with LSTM cells, so as to provide the
hidden layer with long-term memory. Currently, the cell structure
of the most widely used LSTM model has been the one exhibited in
Fig. 2. Its forward calculation method is expressed as follows:

it=0(Wy @ X +Wp; ® hy 1+ W, ®c1+by) (5)
ﬁ:a(wxf ® X+ Wi ® he 1 +Wer ® ¢ 1 +bf) (6)
ct=ft ® ¢t_1 +ir@tanh(Wye ® x¢ + Wy ® hy_1 +be) (7)
0t =0(Wxo ® Xt + Who ® hy_1 +Weo ® ¢t + bo) (8)
ht = o¢ ® tanh(cy) 9)

Wherein, i, ft, 0r, and c; respectively represents the values of the
input gate, the forgotten gate, the output gate and the cell state at
moment t; ¢ and tanh refers to the sigmoid and the hyperbolic
tangent activation function.

Combining formulas (2) - (9), an LSTM prediction model and
training framework for the PWL is therefore established (Fig. 3).
The model takes parameters strongly correlated with PWL as input
feature parameters x; €RP, in which, p represents the number of
parameters. We follow the convention of regression analysis and
adopt mean square error (MSE) as the loss function for training.

. 1 J
Min Loss = ;(yt -5 (10)

In Formula (10), y; and y, refer to the real value and the pre-
dicted value of the PWL at a given moment t, respectively. N is the

O multiply
@® plus
=ct
-1
1

Fig. 2. The structure of LSTM cells in the hidden layer. x;, h;, it, f;, ¢ and o respectively
represents the values of the input eigen vector, the hidden layer sequence, the input
gate, the forgotten gate, the cell state, and the output gate at moment t. ¢ and tanh
respectively refers to the sigmoid and the hyperbolic tangent activation function.
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Fig. 3. LSTM-Based prediction model for the PWL and its training framework.

total number of training examples.

3.2. CSLSTM model

Since the LSTM regression model typically regards Formula (10)
as a loss function, it in fact implies an assumption that all training
examples have the same importance. However, this is not reason-
able in PWL prediction. Unlike standard datasets where examples
are independent identically distributed and class balance, our
training data suffer from two drawbacks that reduce the general-
ization of the models: 1) the correlations between the PWL and
input feature parameters might shift over time. Thus, the model
should pay more attention to recent examples during training.
However, ignoring long-ago historical data is not a good strategy
because we don't know when and how the shifting takes place; 2)
as fluctuation condition examples (the minority data) usually
contain more complicated feature representation than stable con-
dition ones (the majority data), the latter might be easily over-
whelmed by the former. We accordingly propose to introduce a cost
sensitive factor r; to help the model pay more attention to more
important and recent training data, so that we can obtain correct
mappings between the PWL and input features. To be specific, this
factor r; should meet with the following properties:

1. Fluctuation sensitivity, which shares positive correlation with
the fluctuation factor a.

2. Time series sensitivity, which monotonically increases with
time t, i.e. re <7y q.

3. Eternally positive, r; > 0.

4. Convergence, tlil?o Tt < co.

Since the second derivative can better represent the speed of
parametric change, we use it to describe the fluctuation of PWL and
introduce the fluctuation factor a;.

Ve = Ye1l = Vee1 — Ye2l|

a — t=1,2,--N
! o (11)

N :
21”% = Y1l = V-1 = Ye-2ll
t=

In the above equation, we sety_1 = yg = y1, then 0 <a; <1 and
S ,ar = 1. Based on a;, we define r; as:

t
rt:H(ai+1+%), t=1,2,--N (12)
i=1

Where r; obviously meets with property 1 and 3, and the existence
of 1/N precisely ensures that r; should satisfy property 2. Based on
the rule that the geometric mean of positive numbers is less than or
equal to the arithmetic mean, r; can also be proved to meet with
property 4:

N N
N ) Z(ai+1+%)
N= H(a,+l+7>§ =

i N N

—_

N
Since lim (1 + %) =2, r; is definitely convergent.

— 0

3.3. Training and optimization

Due to the CSLSTM model's cyclic and weight sharing mecha-
nism, the back-propagation algorithm cannot be directly applied to
the model's training. We therefore need to adopt the Back-
propagation Through Time (BPTT) algorithm, the training process
of CSLSTM is illustrated in Table 1.

There are many typical gradient-based optimization algorithms,
such as Stochastic Gradient Descent (SGD), AdaGrad [32] and
RMSProp [33]. For our proposed model, we adopt the Adam algo-
rithm [31], an effective gradient-based stochastic optimization al-
gorithm that combines the advantages of AdaGrad and RMSProp
algorithms. In addition, it also has strong robustness in choosing
hyper-parameters.

In the experiments, for a fair comparison, both the CSLSTM and
LSTM model adopt the same configurations.

i.e., a single hidden layer with 128 LSTM cell followed with a
fully-connected layer. Based on Tensorflow framework, we train
both models using Adam optimizer with a batch size of 8, setting
learning rate to 0.001 and training step to 1e5, 1e6 and 2e6
respectively.
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Table 1
Algorithm for the training process of the CSLSTM.

Input: Train data (x,,yl) , where r=12,--N . x is
highly coupled with y, .

Output: variables including 7 and b

1: initialize W and b

2: calculate the cost-sensitive factor

3: for each batch of (x,, y,) € training data do

4. forward calculation p,

5 calculate the batch prediction loss

6:  back calculate the gradient of each weight W and offset
b according to corresponding BPTT

7:  update Wand b
8: end for

4. Results and discussion
4.1. Data description

In this study, we follow the conventional practice [12] and adopt
four metrics to evaluate the performance of PWL time series pre-
diction models, namely root mean square error (RMSE), normalized
root mean square error (NRMSE), symmetric mean absolute per-
centage error (SMAPE), and mean absolute error (MAE).

(14)
(15)
1N [yi-vil
SMAPE=— ) 7L _J0 (16)
M ;(|Yi| + lyil)/2
1M
MAE =1 ;wi—yi\ (17)

In the above evaluation metrics, the smaller the values, the
better the prediction results get. M is the total number of testing
examples. y; and y; refer to the PWL and its prediction value,
respectively.

Moreover, we evaluate the performance of models under two
modes, i.e. the global learning mode and the local learning mode. In
global learning experiments, training examples are sampled from
the entire operating condition, i.e. global feature space (Fig. 4 (a)).
In this case, the whole data set includes 3667 groups of data. We
split 80% of it for training and 20% for testing. Specifically, if a data
group's sequence number can be divided by 5, it is thus cataloged as
a test example (Fig. 4 (a)), i.e. (¥5,¥5),(X10.¥10): ", (X3665. Y3665 )- We

thus obtain 733 groups of testing examples in total. The rest 2994
groups of examples are used for training. In local learning experi-
ments, training examples are sampled from part of the operating
condition, i.e. part of the feature space (Fig. 4 (b)), while testing
examples belong to another part of the feature space. To be con-
crete, we set the first 1600 groups data (the transient process of
increasing reactor power from 30% to 78%) as the training set, i.e.
(X1,¥1), (X2,¥2), -+, (X1600, Y1600)- The next 400 data groups (the
transient change of increasing reactor power from 78% to 90%) form
the testing set, including (x1601.¥1601): (X1602:¥1602),"**»(X2000:¥2000)-

4.2. Experimental results and analysis

On both the global learning and local learning setting, we
perform comparative experiments between our models and the
SVR models that have produced inspiring results in recent years on
time series prediction. The SVR experiments are implemented on
Scikit-learn framework using multiple kernel functions. In practice,
we adopt default configurations for SVR models, but set epsilon to
104 for competitive performance.

In global learning experiments, our deep learning methods
surpass the SVR models. In particular, the CSLSTM model with
fluctuation sensitivity produces the lowest error of [0.001195,
0.006083, 0.001023, 0.000966] (Table 2) for RMSE, NRMSE, SMAPE,
and MAE, respectively. Although the SVR models have high
computational efficiency, they show poor robustness which can be
affected by the selection of kernel functions. For example, the error
produced by the radial basis kernel function in the global learning
experiments is three times the error of the linear kernel function;
however, in the local learning experiments, it works better than the
latter (Table 2). On the contrary, the LSTM and CSLSTM models are
more robust, which gradually converge as the number of iterations
goes from 1e5, 1e6 to 2e6 (Fig. 5). In general, the LSTM and CSLSTM
models can easily learn the feature representation between the
PWL and other input feature parameters in the global learning
mode, since the training data is sampled from the global feature
space through the entire operating condition. Nonetheless, to
further verify models’ generalization ability, we need to perform
experiments on the local learning setting.

In the local learning experiments, the performance of all models
inevitably decreases by some margins as they need to make pre-
dictions outside the feature space of the training data. Nonetheless,
our deep learning models still outperform the SVR models by large
margins. To be specific, the LSTM model could decrease the RMSE,
NRMSE, SMAPE, and MAE of SVR models with the polynomial
kernel function from [0.007837, 0.521378, 0.007515, 0.007361] to
[0.005250, 0.319511, 0.004867, 0.004776] (Table 2), respectively.
Moreover, by integrating the cost-sensitive factor, the errors could
be further reduced by almost 30%. This indicates that by focusing on
the later examples and fluctuation examples, we can improve the
learning of feature representation over time and prevent the rapid
increase of errors in later time.

(2)

(b)

s train example

F;
O test example

Fig. 4. Sampling of two learning settings: (a) The global learning; (b) The local learning. Examples are arranged in time series.
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Table 2
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Comparisons among the CSLSTM, LSTM and SVR for PWL prediction on the global learning setting and the local learning setting. Abbreviations: root mean square error (RMSE),
normalized root mean square error (NRMSE), mean absolute error (MAE), symmetric mean absolute percentage error (SMAPE). The SVR models use three kernel functions, i.e.
radial basis kernel function (rbf), polynomial kernel function (poly), and the linear kernel function (linear). The results of the LSTM and CSLSTM models are obtained by training

1e5, 1e6 and 2e6 step iterations respectively.

Metrics SVR LSTM CSLSTM
rbf poly linear 1e5 steps 1e6 steps 2e6 steps 1e5 steps 1e6 steps 2e6 steps
Global learning RMSE 0.004826 0.002538 0.001558 0.006827 0.001688 0.001234 0.006430 0.001399 0.001195
NRMSE 0.025083 0.012971 0.007977 0.035783 0.008668 0.006268 0.033826 0.007200 0.006083
SMAPE 0.003498 0.001858 0.001226 0.006333 0.001444 0.001052 0.005948 0.001211 0.001023
MAE 0.003335 0.001787 0.001153 0.005909 0.001319 0.000991 0.005543 0.001133 0.000966
Local learning RMSE 0.012393 0.007837 0.014252 0.009081 0.005614 0.005250 0.009388 0.004872 0.003848
NRMSE 0.903358 0.521378 0.760411 0.627127 0.332609 0319511 0.627269 0.294474 0.212058
SMAPE 0.012379 0.007515 0.014517 0.008893 0.005343 0.004867 0.009234 0.004439 0.003442
MAE 0.012088 0.007361 0.014152 0.008703 0.005239 0.004776 0.009034 0.004358 0.003381
NRMSE 0.903358 0.521378 0.760411 0.627127 0.332609 0319511 0.627269 0.294474 0.212058
SMAPE 0.012379 0.007515 0.014517 0.008893 0.005343 0.004867 0.009234 0.004439 0.003442
MAE 0.012088 0.007361 0.014152 0.008703 0.005239 0.004776 0.009034 0.004358 0.003381
SVR CSLSTM
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Fig. 5. The PWL prediction curves. The vertical ordinates represent the normalized PWL. The orange solid lines represent the real value of the PWL, and the dotted lines represent
the values predicted by models. In global learning mode, the horizontal ordinates 1-733 respectively correspond to time sequences [5, 10, ---,3665]. In local learning mode, the
horizontal ordinates 1—400 respectively correspond to time sequences [1601,1602, ---, 2000]. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

5. Conclusions

To ensure the safe operation of marine nuclear power equip-
ment, we apply a deep learning method the LSTM to predict
equipment parameter for the first time. Considering the time series
and fluctuation characteristics of PWRs, we propose a cost-
sensitive mechanism which should demonstrate four properties
including time series sensitivity, fluctuation sensitivity, eternal
positivity, and convergence. Based on these properties, we
construct the cost-sensitive factor and create a novel CSLSTM
model for PWL prediction. With experimental data collected from a
marine PWR simulator, the overall performance of the CSLSTM is
evaluated in the global learning experiments and the local learning
experiments. The results show that the CSLSTM model outperforms
both the LSTM model and SVR model on a variety of evaluation
metrics. In the future, we will further improve the training effi-
ciency and shorten the training time.
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