DOI QR코드

DOI QR Code

Development of Solanum hougasii-specific markers using the complete chloroplast genome sequences of Solanum species

엽록체 전장유전체 정보를 이용한 Solanum hougasii 특이적 분자마커 개발

  • 김수정 (대구대학교 과학생명융합대학 원예학과) ;
  • 박태호 (대구대학교 과학생명융합대학 원예학과)
  • Received : 2020.06.11
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

Solanum hougasii, one of the wild Solanum species, has been widely used in potato breeding since it exhibits excellent resistance to diverse important pathogens. S. hougasii can be directly crossed with the cultivated tetraploid potato (S. tuberosum) owing to its EBN (Endosperm Balanced Number) value of 4, which is same as that of S. tuberosum although it is an allohexaploid. In this study, the complete chloroplast genome sequence of S. hougasii was obtained by next-generation sequencing technology, and compared with that of the chloroplast genome of seven other Solanum species to identify S. hougasii-specific PCR markers. The length of the complete chloroplast genome of S. hougasii was 155,549 bp. The structural organization of the chloroplast genome in S. hougasii was found to be similar to that of seven other Solanum species studied. Phylogenetic analysis of S. hougasii with ten other Solanaceae family members revealed that S. hougasii was most closely related to S. stoloniferum, followed by S. berthaultii, and S. tuberosum. Additional comparison of the chloroplast genome sequence with that of five other Solanum species revealed five InDels and 43 SNPs specific to S. hougasii. Based on these SNPs, four PCR-based markers were developed for the differentiation of S. hougasii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary and breeding aspects of Solanum species.

Solanum hougasii는 감자 야생종 중의 하나로 다양한 종류의 병원균에 대해 저항성을 가지고 있어 감자 육종에서 중요한 재료로 이용되고 있다. S. hougasii는 이질6배체이나 4배체인 감자와 EBN이 4로 같아 직접적인 교배로 육종에 활용될 수 있다. 본 연구에서는 NGS 기술에 의해 완성된 S. hougasii의 엽록체 전장 유전체(cpDNA)와 이를 다른 Solanum종과의 비교를 통해 개발한 분자마커에 대해 보고하였다. S. hougasii의 전체 cpDNA의 크기는 155,549 bp였으며 그 구조는 다른 Solanum 종과 매우 유사하였다. S. hougasii의 cpDNA와 가지과에 속하는 10개 종의 cpDNA 코딩서열을 이용하여 분석한 계통수에서는 S. hougasii와 S. stoloniferum이 거의 동일한 유전체 구성을 보였으며, 다음으로 S. berthaultii 및 S. tuberosum과 유연관계가 가까운 것으로 확인되었다. S. hougasii와 다른 다섯 종의 Solanum과의 전체 cpDNA 다중 정렬을 통해 S. hougasii 특이적인 다섯 개의 InDel과 43개의 SNP 영역을 구명하였으며 이를 기반으로 최종적으로 PCR을 기반으로 한 네 개의 S. hougasii 특이적 마커를 개발하였다. 본 연구의 결과는 Solanum 종들을 대상으로 한 조금 더 세부적인 진화적 그리고 육종적 측면에서의 연구에 기여를 할 수 있을 것이다.

Keywords

References

  1. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5-17 https://doi.org/10.2307/2419674
  2. Brown CR, Hojtahedi H, Santo GS (1999) Genetic analysis of resistance to Meloidogyne chitwoodi introgressed from Solanum hougasii into cultivated potato. J Nematol 31:264-271
  3. Calsa Junior T, Carraro DM, Benatti MR, Barbosa AC, Kitajima JP, Carrer H (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46:366-373 https://doi.org/10.1007/s00294-004-0542-4
  4. Chen L, Guo X, Xie C, He L, Cai X, Tian L, Song B, Liu J (2013) Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theor Appl Genet 126:1861-1872 https://doi.org/10.1007/s00122-013-2098-5
  5. Cho KS, Cheon KS, Hong SY, Cho JH, Im JS, Mekapogu M, Yu YS, Park TH (2016) Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. Plant Cell Rep 35:2113-2123 https://doi.org/10.1007/s00299-016-2022-y
  6. Cho K-S, Cho J-H, Im J-S, Choi J-G, Park Y-E, Jang D-C, Hong S-Y, Park T-H (2018) The chloroplast genome sequence of Solanum hougasii, one of the potato wild relative species. Mitochondr DNA Part B 3:755-757 https://doi.org/10.1080/23802359.2018.1491342
  7. Cho HM, Kim-Lee HY, Om YH, Kim JK (1997) Influence of endosperm balance number (EBN) in interploidal and interspecific crosses between Solanum tuberosum dihaploids and wild species. Korean J Breed 29:154-161
  8. Cho KS, Park TH (2016) Complete chloroplast genome sequence of Solanum nigrum and Development of markers for the discrimination of S. nigrum. Hort Environ Biotechnol 57:69-78 https://doi.org/10.1007/s13580-016-0003-2
  9. Cho K-S, Yun B-K, Yoon Y-H, Hong S-Y, Mekapogu M, Kim K-H, Yang T-J (2015) Complete chloroplast genome sequence of tartary Buckwheat (Fagopyrum tataricum) and comparative analysis with common Buckwheat (F. esculentum). PloS One 10:e0125332 https://doi.org/10.1371/journal.pone.0125332
  10. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369-1379 https://doi.org/10.1007/s00299-006-0196-4
  11. Cockerham G (1970) Genetical studies on resistance to potato viruses X and Y. Heredity 25:309-348 https://doi.org/10.1038/hdy.1970.35
  12. Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L and Ollitrault P (2013) A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1-19 https://doi.org/10.1093/aob/mcs227
  13. Hawkes JG (1990) The potato: Evolution, biodiversity and genetic resources. Belhaven Press, London, UK
  14. Haynes KG, Qu X (2016) Late blight and early blight resistance from Solanum hougasii introgressed into Solanum tuberosum. Amer J of Potato Res 93:86-95 https://doi.org/10.1007/s12230-015-9492-2
  15. Hosaka K (2002) Distribution of the 241 bp deletion of chloroplast DNA in wild potato species. Am J Potato Res 79:119-123 https://doi.org/10.1007/BF02881520
  16. Hosaka K, Hanneman RE Jr (1988) The origin of the cultivated tetraploid potato based on chloroplast DNA. Theor Appl Genet 76:172-176 https://doi.org/10.1007/BF00257842
  17. Hosaka K, Sanetomo R (2012) Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor Appl Genet 125:1237-1251 https://doi.org/10.1007/s00122-012-1909-4
  18. Inglis DA, Brown CR, Gundersen BG, Porter LD, Miller JS, Johnson DA, Lozoya-Saldana H, Haynes KG (2007) Assessment of Solanum Hougasii in Washington and Mexico as a source of resistance to late blight. Amer J of Potato Res 84:217-228 https://doi.org/10.1007/BF02986271
  19. Jheng C-F, Chen T-C, Lin J-Y, Chen T-C, Wu W-L, Chang C-C (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci 190:62-73 https://doi.org/10.1016/j.plantsci.2012.04.001
  20. Kim S, Cho K-S, Park T-H (2018) Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome species. J Plant Biotechnol 45:207-216 https://doi.org/10.5010/JPB.2018.45.3.207
  21. Kim KJ, Choi KS, Jansen RK (2005) Two chloroplast DNA inversion originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol Biol Evol 22: 1783-1792 https://doi.org/10.1093/molbev/msi174
  22. Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, Park HS, Yang TJ (2015) Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS One 10:e0117159 https://doi.org/10.1371/journal.pone.0117159
  23. Kim S, Park T-H (2019) PCR-based markers developed by comparison of complete chloroplast genome sequences discriminate Solanum chacoense from other Solanum species. J Plant Bioechnol 46:79-87 https://doi.org/10.5010/JPB.2019.46.2.079
  24. Komori T, Nitta N (2005) Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93-98 https://doi.org/10.1270/jsbbs.55.93
  25. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403-410 https://doi.org/10.1046/j.1365-313X.1993.04020403.x
  26. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12 https://doi.org/10.1186/gb-2004-5-2-r12
  27. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenome DRAW - a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575-W581 https://doi.org/10.1093/nar/gkt289
  28. Lossl A, Gotz A, Braun A, Wenzel G (2000) Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica 116:221-230 https://doi.org/10.1023/A:1004039320227
  29. Mohapatra T, Kirti PB, Dinesh Kumar V, Prakash S, Chopra VL (1998) Random chloroplast segregation and mitochondrial genome recombination in somatic hybrid plants of Diplotaxis catholica + Brassica juncea. Plant Cell Rep 17:814-818 https://doi.org/10.1007/s002990050489
  30. Ortiz R, Ehlenfeldt MK (1992) The importance of endorsperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60:105-113 https://doi.org/10.1007/BF00029665
  31. Palmer JD (1991) Plastid chromosomes: structure and evolution, p. 5-53. In: L. Bogorad, K. Vasil (eds.) The molecular biology of plastids. Academic Press, San Diego, USA
  32. Park T-H, Gros J, Sikkema A, Vleeshouwers VGAA, Muskens M, Allefs S, Jacobsen E, Visser RGF, van der Vossen EAG (2005) The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant-Microb Interact 18:722-729 https://doi.org/10.1094/MPMI-18-0722
  33. Pendinen G, Spooner DM, Jiang J, Gavrilenko T (2012) Genomic in situ hybridization reveals both auto- and allopolyploid origins of different North and Central American hexaploid potato (Solanum sect. Petota) species. Genome 55:407-415 https://doi.org/10.1139/g2012-027
  34. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants, p. 45-68. In: H. Henry (ed.) Diversity and evolution of plants: genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, UK
  35. Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome. Plant Physiol 138:1232-1246 https://doi.org/10.1104/pp.104.057729
  36. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309-322 https://doi.org/10.1007/s11103-005-8882-0
  37. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103-107 https://doi.org/10.1101/gr.809403
  38. Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JDG (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252-258 https://doi.org/10.1007/s00122-004-1820-8
  39. Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283-383 https://doi.org/10.1007/s12229-014-9146-y
  40. Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanism of translation in chloroplast. Annu Rev Genet 32:437-459 https://doi.org/10.1146/annurev.genet.32.1.437
  41. Swofford DL (2001) Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland
  42. Symda-Dajmund P, Śliwka J, Wasilewicz-Flis I, Jakuczun H, Zimnoch-Guzowska E (2016) Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DArT and cytoplasmic DNA markers. Plant Cell Rep 35: 1345-1358 https://doi.org/10.1007/s00299-016-1966-2
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetic analysis version 6.0. Mol Biol Evol 30:2725-2729 https://doi.org/10.1093/molbev/mst197
  44. Uncu AT, Celik I, Devran Z, Ozkaynak E, Frary A, Frary A, Doganlar S (2015) Development of a SNP-based CAPS assay for the Me1 gene conferring resistance to root knot nematode in pepper. Euphytica 206:393-399 https://doi.org/10.1007/s10681-015-1489-x
  45. Uribe P, Jansky S, Halterman D (2014) Two CAPS markers predict Verticillium wilt resistance in wild Solanum species. Mol Breeding 33:465-476 https://doi.org/10.1007/s11032-013-9965-2
  46. Wang Y, Liu W, Xu L, Wang Y, Chen Y, Luo X, Tang M, Liu L (2017) Development of SNP markers based on transcriptome sequences and their application in germplasm identification in radish (Raphanus sativus L.). Mol Breeding 37:26 https://doi.org/10.1007/s11032-017-0632-x
  47. Wyman SK, Jansen RK, Boore JL (2004) Antomatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252-3255 https://doi.org/10.1093/bioinformatics/bth352
  48. Xiang F, Xia G, Zhi D, Wang J, Nie H, Chen H (2004) Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome 47:680-688 https://doi.org/10.1139/g04-023
  49. Yamaki S, Ohyangi H, Yamasaki M, Eiguchi M, Miyabayashi T, Kubo T, Kurata N and Nonomura K (2013) Development of INDEL markers to discriminate all genome types rapidly in the genus Oryza. Breeding Sci 63:246-254 https://doi.org/10.1270/jsbbs.63.246