References
- L. V. Ballestra, G. Pacelli, and D. Radi, A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion, Chaos Solitons Fractals, 87 (2016), 240-248. https://doi.org/10.1016/j.chaos.2016.04.008
- T. Bjork and H. Hult, A note on Wick products and the fractional Black-Scholes model, Financ. Stoch., 9 (2005), 197-209. https://doi.org/10.1007/s00780-004-0144-5
- P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913-934. https://doi.org/10.2307/3318626
- P. Cheridito, Arbitrage in fractional Brownian motion models, Financ. Stoch., 7 (2003), 533-553. https://doi.org/10.1007/s007800300101
- Y. d'Halluin, P. A. Forsyth, and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112. https://doi.org/10.1093/imanum/drh011
- S. Lee and Y. Lee, Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients, ESAIM Math. Model. Numer. Anal., 53 (2019), 1741-1762. https://doi.org/10.1051/m2an/2019035
- B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437. https://doi.org/10.1137/1010093
- R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141-183. https://doi.org/10.2307/3003143
- F. Shokrollahi and A. Kilicman, Pricing currency option in a mixed fractional Brownian motion with jumps environment, Math. Probl. Eng., 2014 (2014), Art. ID 858210, 13 pages.
- L. Sun, Pricing currency options in the mixed fractional Brownian motion, Physica A, 392 (2013), 441-3458.
- W. L. Xiao, W. G. Zhang, X. L. Zhang, and X. L. Zhang, Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm, Physica A, 391 (2012), 6418-6431. https://doi.org/10.1016/j.physa.2012.07.041