DOI QR코드

DOI QR Code

Effect of Specific Surface Area of Activated Carbon Fiber on Harmful Gas Adsorption and Electrochemical Responses

활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성

  • Kang, Jin Kyun (Korea Institute of Convergence Textile (KICTEX)) ;
  • Chung, Yong Sik (Department of Organic Materials and Textile Engineering, Chonbuk National University) ;
  • Bai, Byong Chol (Korea Institute of Convergence Textile (KICTEX)) ;
  • Ryu, Ji Hyun (Department of Carbon Convergence Engineering, Wonkwang University)
  • 강진균 (ECO융합섬유연구원) ;
  • 정용식 (전북대학교 유기소재섬유공학과) ;
  • 배병철 (ECO융합섬유연구원) ;
  • 류지현 (원광대학교 탄소융합공학과)
  • Received : 2020.05.15
  • Accepted : 2020.06.16
  • Published : 2020.06.30

Abstract

Recently, there has been growing interest in the study of removal of harmful and hazardous pollutants emitted by industrial activities. In this study, we have developed porous activated carbon fibers prepared by a water vapor activation method and analyzed the adsorptions of the harmful gases with electrochemical responses of activated carbon fibers. To control the uniformity of pore structures, active reaction areas, and active sites, the reaction conditions of activation temperatures were varied from 750 to 850 ℃ with the predetermined reaction time intervals (30 to 240 min). The SO2 and NO gas adsorptions of activated carbon fibers prepared by various reaction conditions were analyzed and monitored by electrochemical sensor responses. In particular, the activated carbon fibers prepared at the reaction temperature of 850 ℃ and time of 45 min showed the highest specific surface area (1,041.9 ㎡/g) and pore characteristics (0.42 ㎤/g), and excellent adsorption capabilities of SO2 (1.061 mg/g) and NO (1.210 mg/g) gases, respectively.

최근 산업활동을 통해 배출되는 유해 오염물질 제거에 대한 관심이 증가하고 있다. 본 연구에서는 수증기 활성화 법을 이용하여 활성탄소섬유를 제조하고, 이의 유해가스 흡착 및 전기화학적 감응 특성을 분석하였다. 활성탄소섬유의 균일한 기공 구조, 활성 반응 면적 및 반응 위치를 조절하기 위하여, 활성화 온도(750-850 ℃) 및 활성화 시간(30-240 min)을 조절하였고, 다양한 활성화 조건을 통해 제조된 활성탄소섬유의 SO2와 NO 가스 흡착 및 가스 센서를 통한 감응 특성을 분석하였다. 특히, 850 ℃에서 45 min동안 수증기 활성화 반응을 통해 제조된 활성탄소섬유가 가장 높은 비표면적(1,041.9 ㎡/g)과 기공 특성(0.42 ㎤/g)을 보였으며, 우수한 SO2 (1.061 mg/g) 및 NO (1.210 mg/g) 가스 흡착 특성을 보였다.

Keywords

References

  1. S. Tang, N. Lu, J. K. Wang, S. K. Ryu, H. S. Choi, J. Phys. Chem. C., 111, 1820 (2007). https://doi.org/10.1021/jp065907j
  2. M. J. Kim, M. J. Jung, M. I. Kim, S. S. Choi, Y. S. Lee, Appl. Chem. Eng., 26, 587 (2015). https://doi.org/10.14478/ace.2015.1083
  3. J. Zhang, Y. Duan, Q. Zhou, C. Zhu, M. She, W. Ding, Chem. Eng. J., 294, 281 (2016). https://doi.org/10.1016/j.cej.2016.02.002
  4. M. J. Kim, M. J. Jung, S. S. Choi, Y. S. Lee, Appl. Chem. Eng., 26, 432 (2015). https://doi.org/10.14478/ace.2015.1050
  5. M. Fayaz, P. Shariaty, J. D. Atkinson, Z. Hashisho, J. H. Phillips, J. E. Anderson, M. Nichols, Environ. Sci. Technol., 49, 4536 (2015). https://doi.org/10.1021/es505953c
  6. S. C. Kang, J. S. Im, Y. S. Lee, Appl. Chem. Eng., 22, 243 (2011).
  7. S. D. kim, J. W. Kim, J. S. Im, S. H. Cho, Y. S. Lee, Trans. Korean Hydrog. New Energy Soc., 17, 47 (2006).
  8. H. S. Lim, M. J. Kim, E. Y. Kong, J. D. Jeong, Y. S. Lee, Appl. Chem. Eng., 29, 312 (2018). https://doi.org/10.14478/ACE.2018.1007
  9. M. J. Jung, M. S. Park, S. Lee, Y. S. Lee, Appl. Chem. Eng., 27, 319 (2016). https://doi.org/10.14478/ace.2016.1042
  10. K. Okajima, K. Ohta, M. Sudoh, Electrochim. Acta., 50, 2227 (2005). https://doi.org/10.1016/j.electacta.2004.10.005
  11. M. S. Park, S. Lee, M. J. Jung, H. G. Kim, Y. S. Lee, Carbon Lett., 20, 19 (2016). https://doi.org/10.5714/CL.2016.20.019
  12. S. Lee, M. S. Park, M. J. Jung, Y. S. Lee, Trans. Korean Hydrog. New Energy Soc., 27, 298 (2016). https://doi.org/10.7316/KHNES.2016.27.3.298
  13. B. C. Bai, H. U. Lee, C. W. Lee, Y. S. Lee, J. S. Im, Chem. Eng. J., 306, 260 (2016). https://doi.org/10.1016/j.cej.2016.07.046
  14. B. J. Kim, Y. S. Lee, S. J. Park, Int. J. Hydrogen Energy, 33, 4112 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.077
  15. J. S. Im, S. J. Park, Y. S. Lee, Int. J. Hydrogen Energy, 34, 1423 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.054
  16. M. I. Kim, Y. S. Lee, Appl. Chem. Eng., 25, 193 (2014). https://doi.org/10.14478/ace.2014.1006
  17. S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia, Appl. Surf. Sci., 255, 8443 (2009). https://doi.org/10.1016/j.apsusc.2009.05.150
  18. Y. Kawabuchi, H. Oka, S. Kawano, I. Mochida, N. Yoshizawa, Carbon, 36, 377 (1998). https://doi.org/10.1016/S0008-6223(97)00186-3
  19. S. Lim, S. H. Yoon, Y. Shimizu, H. Jung, I. Mochida, Langmuir, 20, 5559 (2004). https://doi.org/10.1021/la036077t
  20. A. Bagreev, T. JBandosz, D. C. Locke, Carbon, 39, 1971 (2001). https://doi.org/10.1016/S0008-6223(01)00026-4
  21. T. H. Ko, P. chiranairadul, C. K. Lu, C. H. Lin, Carbon, 30, 647 (1992). https://doi.org/10.1016/0008-6223(92)90184-X
  22. B. C. Bai, E. A. Kim, C. W. Lee, Y. S. Lee, J. S. Im, Appl. Surf. Sci., 353, 158 (2015). https://doi.org/10.1016/j.apsusc.2015.06.046
  23. J. Moon, J. A. Park, S. J. Lee, T. Zyung, I. D. Kim, Sens. Actuators B Chem., 149, 301 (2010). https://doi.org/10.1016/j.snb.2010.06.033
  24. W. S. Cho, S. I. Moon, K. K. Paek, Y. H. Lee, J. H. Park, B. K. Ju, Sens. Actuators B Chem., 119, 180 (2006). https://doi.org/10.1016/j.snb.2005.12.004
  25. J. Suehiro, H. Imakiire, S. I. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Sens. Actuators B Chem., 114, 943 (2006). https://doi.org/10.1016/j.snb.2005.08.043
  26. A. A. Abdulrasheed, A. A. Jalil, S. Triwahyono, M. A. A. Zaini, Y. Gambo, M. Ibrahim, Renew. Sus. Energ. Rev., 94, 1067 (2018). https://doi.org/10.1016/j.rser.2018.07.011