DOI QR코드

DOI QR Code

Comparison of Mycelial Growth Characteristics According to Culture Conditions of Ulleungdo Collection Strains

울릉도 수집 균주의 배양조건에 따른 균사 생장 특성 비교

  • Kim, Minkyeong (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Ahn, Chorong (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Kim, Changmu (Microorganism Resources Division, National Institute of Biological Resources)
  • 김민경 (국립생물자원관 생물자원연구부 미생물자원과) ;
  • 안초롱 (국립생물자원관 생물자원연구부 미생물자원과) ;
  • 김창무 (국립생물자원관 생물자원연구부 미생물자원과)
  • Received : 2020.02.05
  • Accepted : 2020.06.16
  • Published : 2020.06.30

Abstract

The collection of biological data of indigenous species must comply with the Nagoya Protocol. Fungi contain various bioactive substances making them an attractive source of several products, including food and medicines. In this study, we investigated the growth characteristics of five indigenous fungal strains, Fomitiporia punctata, Polyporus ulleungus, P. brumalis, Gymnopus subnudus, and Tyromyces kmetii, isolated from samples collected in the Ulleungdo Island. The growth rates for each strain were assessed across various temperatures (20 ℃ to 35 ℃), culture media (Potato dextrose agar, Malt extract & Yeast extract agar, Malt extract agar, Malt extract & peptone agar, Sabouraud dextrose agar, and Modified Melin-Norkrans agar), and pH conditions (4.0 to 8.0). Additionally, we assessed the mycelial growth characteristics in liquid culture. The mycelial growth in different media varied across species; specifically, F. punctata (in MMNA), G subnudus (in MMNA), and P. brumalis (in MEPA) showed rapid growth. Optimal growth temperatures ranged between 25 ℃ and 30 ℃ for most species, with the exception of T. kmetii and P. brumalis, which were able to grow across all the temperatures tested. P. brumalis showed the best growth rate, whereas P. ulleungus showed the lowest growth potential. The optimal pH conditions for mycelial growth ranged between 4.0 and 5.0. In experiments using culture flasks, the dry weight of the culture filtrates decreased with the increasing incubation time and showed a significant decrease between 1 and 6 months of incubation, indicating that the five strains take longer than a month to fully use the culture media. Our findings highlight and establish the optimal growth conditions for five different fungal species that can be used in future application studies.

본 연구에서는 울릉도에서 수집한 자생 버섯 균주 5종의 평판배지 배양 특성과 액체배양에서의 특성을 확인하여 자생 균류의 이용을 위한 기초 정보를 확보하였다. 5종의 야생 균주의 최적 배양온도는 25-30℃이고, pH는 4.0-5.0의 산성임을 확인하였다. 특히P. brumalis는 35℃에서 생장 속도가 가장 빠른 것으로 보아 고온성 버섯으로 판단된다. 실험에 사용한 상용 배지 중 최적 배지는 F. punctata의 경우 MEPA 배지, P. ulleungus는 MMNA 배지, G. subnudus는 MEA 배지, T. kmetii는 MMNA 배지, 마지막으로P. brumalis는 모든 배지에서 빠른 생장 속도를 보였으며 6종류의 배지 중 MEA 배지는 모든 균주의 균사 밀도가 낮아 배양이 적합하지 않은 조성임을 확인하였다. P. brumalis는 5종의 균주중 가장 빠른 생육 속도를 보였으며, 반면에P. ulleungus는 가장 저조한 생장을 보여 같은 속(genus)의 종이지만, 생육특성의 차이가 극명함을 보였다. 액체배양을 통해 배양 기간에 따른 배양여액의 건조 중량을 비교한 결과 배양 기간이 길수록 건조량이 감소하는 양상을 보였으며, 특히 6개월 이전까지 큰 폭으로 감소하였다. 이 결과로 정치배양 조건에서의 액체배양은 한달 이상의 배양 시간이 주어져야만 배지 성분을 충분히 이용할 수 있다는 것을 확인하였다. 본 실험의 결과로 5종의 균주에 대한 최적 배양조건을 확립하고 향후 응용 연구에 기초 자료로 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Ainsworth GC. Ainsworth & Bisby's dictionary of the fungi. 10th ed. Wallingford: Cabi; 2008.
  2. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: Current perspectives. Int J Med Mushrooms 1999;1:31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  3. Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int 2001;34:521-26. https://doi.org/10.1016/S0963-9969(01)00067-9
  4. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002;60:258-74. https://doi.org/10.1007/s00253-002-1076-7
  5. Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 2005;67;453-68. https://doi.org/10.1007/s00253-004-1787-z
  6. Secretariat of the Convention on Biological Diversity. Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Montreal: United Nations Environmental Programme; 2011.
  7. Ulleung-gun. Welcome to mystery island Ulleung-do [Internet]. Ulleung-gun (Korea): Ulleung-gun Office; 2011 [cited 2011 Dec 30]. Available from: http://www.ulleung.go.kr/Wooreumoe/main.htm.
  8. Hawksworth DL. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol Res 2001;105:1422-32. https://doi.org/10.1017/S0953756201004725
  9. Muller GM, Schmit JP. Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 2007;16:1-5. https://doi.org/10.1007/s10531-006-9117-7
  10. Kim C, Min YJ, Park JY, Kim NK, Lee JS. Studies of higher fungal diversity of Ulleungdo and Dokdo island (I). Incheon; National Institute of Biological Resources; 2015.
  11. Kim C, Kim M, Woo EJ, Lim YW, Park JY, Kim NK. Studies of higher fungal diversity of Ulleungdo and Dokdo island(II). Incheon; National Institute of Biological Resources; 2016.
  12. Park KH, Kim C, Kim M, Kim NK, Park JY, Eimes JA, Cho HJ, Han SK, Lim YW. Three new recorded species of the Physalacriaceae on Ulleung island, Korea. Mycobiology 2017;45:9-14. https://doi.org/10.5941/MYCO.2017.45.1.9
  13. Park MS, Cho HJ, Kim NK, Park JY, Lee H, Park KH, Kim MJ, Kim JJ, Kim C, Lim YW. Ten new tecorded dpecies of Macrofungi on Ulleung island, Korea. Mycobiology 2017;45:286-96. https://doi.org/10.5941/MYCO.2017.45.4.286
  14. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Jones EB, McKenzie EH, Camporesi E, Bulgakov TS, et al. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 2017;83;1-261. https://doi.org/10.1007/s13225-017-0378-0
  15. Lim YW, Lee JS, Kim NK, Park JY, Kim M, Kim C. Mushrooms of Ulleungdo Islands in Korea. Incheon; National Institute of Biological Resources; 2017.
  16. Cha WS, Lee MY, Cho BS, Park SY, Oh DG. A study on the mycelial growth of Agrocybe aegerita in flask culture. Kor J Life Sci 2004;14:560-6. https://doi.org/10.5352/JLS.2004.14.4.560
  17. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 2012;109:6241-6. https://doi.org/10.1073/pnas.1117018109
  18. Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR protocols: A guide to methods and applications. New York: Academic press; 2012. p. 315-22.
  19. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  20. Kim C, Kim M, Woo EJ, Lee JS, Lee S, Lee JS. Studies of useful materials from indigenous mushroom species(III). Incheon: National Institute of Biological Resources; 2016.
  21. Jo WS, Kang MJ, Choi SY, Yoo YB, Seok SJ, Jung HY. Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology 2010;38:195-202 https://doi.org/10.4489/MYCO.2010.38.3.195
  22. Kang JA, Ka KH, Kim JY, Kim SH. Mycelial growth properties of domestically collected ectomycorrhizal Tricholoma mushrooms in various culture conditions. Kor J Mycol 2018;46:271-80. https://doi.org/10.4489/KJM.20180037
  23. Choi D, Maeng JM, Ding JL, Cha WS. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J Microbiol Biotechnol 2007;17:1369-78.
  24. Lee WY, Park Y, Ahn JK. Improvement of ergone production from mycelial culture of Polyporus umbellatus. Mycobiology 2007;35:82-6. https://doi.org/10.4489/MYCO.2007.35.2.082
  25. Yang FC, Liau CB. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Biosyst Eng 1998;19:233-6.