DOI QR코드

DOI QR Code

Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로-

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors

  • 양혁주 (연세대학교 의류환경학과) ;
  • 김재현 (연세대학교 의류환경학과) ;
  • 이승신 (연세대학교 의류환경학과) ;
  • 조길수 (연세대학교 의류환경학과)
  • Yang, Hyukjoo (Dept. of Clothing & Textiles, Yonsei University) ;
  • Kim, Jaehyun (Dept. of Clothing & Textiles, Yonsei University) ;
  • Lee, Seungsin (Dept. of Clothing & Textiles, Yonsei University) ;
  • Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
  • 투고 : 2019.12.13
  • 심사 : 2020.04.17
  • 발행 : 2020.06.30

초록

This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

키워드

참고문헌

  1. Bose, S., Kuila, T., Uddin, M. E., Kim, N. H., Lau, A. K., & Lee, J. H. (2010). In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer, 51(25), 5921-5928. doi:10.1016/j.polymer.2010.10.014
  2. Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e- textile technologies: Smart Materials and Structures, 23(5), 053001. https://doi.org/10.1088/0964-1726/23/5/053001
  3. Cho, G. S., Yang, Y. J., & Sung, M. S. (2008). Bio monitoring smart clothing and development of current situation of E-textile. Fashion & Textile Research Journal, 10(1), 1-10.
  4. Cochrane, C., & Cayla, A. (Eds.) (2013). Polymer-based resistive sensors for smart textiles: Multidisciplinary know-how for smart- textiles developers (pp. 129-153). Sawston: Woodhead.
  5. Davidson, R. G., & Turner, T. G. (1995). An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulfate anion. Synthetic Metals, 72(2), 121-128. doi:10. 1016/0379-6779(94)02332-S https://doi.org/10.1016/0379-6779(94)02332-S
  6. Deogaonkar, S. C., & Patil, A. J. (2014). Development of conductive cotton fabric by in situ chemical polymerization of pyrrole using ammonium peroxidisulphate as oxidant. Indian Journal of Fiber & Textile Research, 39(1), 135-138.
  7. Dias, J. C., Correia, D. M., Botelho, G., Lanceros-Méndez, S., & Sencadas, V. (2014). Electrical properties of intrinsically conductive core-shell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 197, 198-203. doi:10.1016/j.synthmet. 2014.09.013
  8. Hamdani, S. T. A., Fernando, A., Hussain, M. D., & Potluri, P. (2016). Study of electro-thermal properties of pyrrole polymerised knitted fabrics. Journal of Industrial Textiles, 46(3), 771-786. doi:10. 1177/1528083715598653 https://doi.org/10.1177/1528083715598653
  9. Han, J. H. (2005). Current status on synthesis of carbon nanotubes and their applications to conducting polymer. Polymer Science and Technology, 16(2), 162-175.
  10. Hebeish, A., Farag, S., Sharaf, S., & Shaheen, T. I. (2016). Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers, 151, 96-102. doi:10.1016/j.carbpol.2016.05.054
  11. Huang, G., Liu, L., Wang, R., Zhang, J., Sun, X., & Peng, H. (2016). Smart color-changing textile with high contrast based on a single- sided conductive fabric. Journal of Materials Chemistry C, 4(32), 7589-7594. https://doi.org/10.1039/C6TC02051H
  12. Im, S. E., Kim, S. Y., Kim, S. Y., Kim, S. J., & Kim, J. H. (2015). A study on improving electrical conductivity for conducting polymers and their applications to transparent electrodes. Applied Chemistry for Engineering, 26(6), 640-647. doi:10.14478/ace. 2015.1105
  13. Jang, E. J., & Cho, G. S. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi:10.5805/ SFTI.2019.21.6.697
  14. Jang, K. S. (2001). Chemical synthesis and characterization of soluble polypyrrole. Unpublished doctoral dissertation, Myongji University, Seoul.
  15. Jeong, J., & Lee, S. S. (2019). Electrospun poly(vinyl alcohol) nanofibrous membranes containing Coptidis Rhizoma extracts for potential biomedical applications. Textile Research Journal, 89(17), 3506-3518. doi:10.1177/0040517518813679
  16. Kang, Y. O., Yoon, I. S., Lee, S. Y., Kim, D. D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan coated poly(vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92B(2), 568-576. doi:10. 1002/jbm.b.31554
  17. Kim, H. C., & Kang, J. M. (2008). Status and prospects of technology for ubiquitous healthcare. Journal of Electrical Engineering and Information Science, 26(1), 38-45.
  18. Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7), 075006. https://doi.org/10.1088/0964-1726/27/7/075006
  19. Kim, J. H., Yang, H. J., & Cho, G. S. (2019) Production of polypyrrole coated PVA nano web electroconductive textiles for application to ECG electrode. Fashion & Textile Research Journal, 21(3), 363-369. doi:10.5805/SFTI.2019.21.3.363
  20. Laforgue, A. (2010). Electrically controlled colour-changing textiles using the resistive heating properties of PEDOT nanofibers. Journal of Materials Chemistry, 20(38), 8233-8235. doi:10.1039/c0jm02307h
  21. Laforgue, A., & Robitaille, L. (2010). Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization. Macromolecules, 43(9), 4194-4200. doi:10.1021/ma9027678
  22. Lee, E. G., Kim, I. H., Liu, H., & Cho, G. S. (2017a). Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers and Polymers, 18(9), 1749-1753. doi:10.1007/s12221-017-7410-6
  23. Lee, K., & Lee, S. S. (2015). Electrospun zinc oxide/poly(vinyl alcohol) nanofibrous membranes: In vitro and wear trial evaluation of antimicrobial activity. Textile Research Journal, 85(19), 1999- 2008. doi:10.1177/0040517515578325
  24. Lee, S. H., Lee, S. K., Jang, D. S., & Shim, B. S. (2017b). Current research on conducting polymer-carbon nanocomposites for bioengineering applications. Elastomers and Composites, 52(1), 69-80. doi:10.7473/EC.2017.52.1.69
  25. Lei, J., Zhu, Y., Shi, C., Xu, Q., & Tao, X. (2020). Appropriate amount of polyaniline coated $Co_3O_4$ nanofibers and their excellent electrochemical properties. Physica E: Low-dimensional Systems and Nanostructures, 117, 113836. doi:10.1016/j.physe.2019.113836
  26. Liu, Y., Zhao, X., & Tuo, X. (2017). Preparation of polypyrrole coated cotton conductive fabrics. The Journal of the Textile Institute, 108(5), 829-834. doi:10.1080/00405000.2016.1193981
  27. Lymberis, A., & Olsson, S. (2003). Intelligent biomedical clothing for personal health and disease management: State of the art and future vision. Telemedicine Journal and E-health, 9(4), 379-386. doi:10.1089/153056203772744716
  28. Macasaquit, A. C., & Binag, C. A. (2010). Preparation of conducting polyester textile by in situ polymerization of pyrrole. Philippine Journal of Science, 139(2), 189-196.
  29. Mallapragada, S. K., & Peppas, N. A. (1996). Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. Journal of Polymer Science Part B: Polymer Physics, 34(7), 1339-1346. doi:10.1002/ (SICI)1099-0488(199605)34:7<1339::AID-POLB15>3.0.CO;2-B
  30. Mansur, H. S., Oréfice, R. L., & Mansur, A. A. (2004). Characteri- zation of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193-7202. doi:10.1016/j.polymer. 2004.08.036
  31. Muller, D., Rambo, C. R., Porto, L. M., Schreiner, W. H., & Barra, G. M. (2013). Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydrate Polymers, 94(1), 655- 662. doi:10.1016/j.carbpol.2013.01.041
  32. Nair, S., Hsiao, E., & Kim, S. H. (2008). Melt-welding and improved electrical conductivity of nonwoven porous nanofiber mats of poly(3, 4-ethylenedioxythiophene) grown on electrospun polystyrene fiber template. Chemistry of Materials, 21(1), 115-121. doi:10. 1021/cm8029449 https://doi.org/10.1021/cm8029449
  33. Oh, T. I., Yoon, S., Kim, T. E., Wi, H., Kim, K. J., Woo, E. J., & Sadleir, R. J. (2013). Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 204-211. doi:10.1109/TBCAS.2012. 2201154
  34. Omastova, M., Trchova, M., Kovarova, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138(3), 447-455. doi:10.1016/S0379-6779(02)00498-8
  35. Otto, C., Milenkovic, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307-326.
  36. Park, D. H. (2002). Synthesis and properties of polypyrrole nanotubes and nanowires. Unpublished master's thesis, Korea University, Seoul.
  37. Park, H. J., Hong, K. H., Kim, S. H., & Shin, S. S. (2007). Development of the practical garment apparatus to measure viral sign of ECG for U-health care. Journal of the Korean Society of Clothing and Textiles, 31(2), 292-299. doi:10.5850/JKSCT.2007. 31.2.292
  38. Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen- doped carbon nanotubes. Materials & Design, 141, 333-341. doi: 10.1016/j.matdes.2017.12.052
  39. Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. BioResources, 6(3), 3585-3620.
  40. Shin, S. C., Ryu, C. Y., Kang, J. H., Nam, S. H., Song, Y. S., Lim, T. G., Lee, J. W., Park, D. G., Kim, S. H., & Kim, Y. T. (2004). Realization of an E-health system to perceive emergency situations. Journal of Electrical Engineering and Information Science, 31(1B), 322-324.
  41. Shabafrooz, V., Mozafari, M., Vashaee, D., & Tayebi, L. (2014). Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. Journal of Nanoscience and Nanotechnology, 14(1), 522-534. doi:10.1166/jnn.2014.9195
  42. Song, K. T., Lee, J. Y., Kim, H. D., Kim, D. Y., Kim, S. Y., & Kim, C. Y. (2000). Solvent effects on the characteristics of soluble polypyrrole. Synthetic Metals, 110(1), 57-63. doi:10.1016/S0379- 6779(99)00267-2
  43. Song, Y. J., Lee, E. S., & Lee, S. S. (2017). Water absorption properties and biodegradability of lignin/PVA nanofiberous webs. Journal of the Korean Society of Clothing and Textiles, 41(3), 517-526. doi:10.5850/JKSCT.2017.41.3.517
  44. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992. doi:10.3390/s 140711957
  45. Tabaciarova, J., Micusik, M., Fedorko, P., & Omastova, M. (2015). Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation and Stability, 120, 392-401. doi:10.1016/j.polymdegradstab.2015.07.021
  46. Whang, Y. E., Han, J. H., Motobe, T., Watanabe, T., & Miyata, S. (1991). Polypyrroles prepared by chemical oxidative polymerization at different oxidation potentials. Synthetic Metals, 45(2), 151-161. doi:10.1016/0379-6779(91)91799-G