Acknowledgement
This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 106-2221-E-006-036-MY3.
References
- Aghababaei, R., Reddy, J. N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Modell., 38, 5934-3955. https://doi.org/10.1016/j.apm.2014.03.036
- Arani, A.G., Shiravand, A., Rahi, M. and Kolahchi, R. (2012), "Nonlocal vibration of coupled DLGS systems embedded on visco-Pasternak foundation", Physica B, 407(21), 4123-4131. https://doi.org/10.1016/j.physb.2012.06.035.
- Bakshi, S.R., Lahiri, D. and Agarwal, A. (2010), "Carbon nanotube reinforced metal matrix composites-a review", Int. Mater. Rev., 55(1), 41-64. https://doi.org/10.1179/095066009x12572530170543.
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
- Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behavior of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.
- Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst. 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/sss.2016.20.2.227.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York.
- Eringen, A.C., Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Fahsi, B., Kaci, A., Tounsi, A., Bedia, E.A.A. (2012), "A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings", J. Mech. Sci. Technol., 26(12), 4073-4079. https://doi.org/10.1007/s12206-012-0907-4
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017.
- Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T. and Lazarevic, M. (2015), "Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field", Int. J. Mech. Sci., 96-97, 132-142. https://doi.org/10.1016/j.ijmecsci.2015.03.014.
- Karlicic, D., Kozic, P. and Pavlovic, R. (2016), "Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium", Appl. Math. Modell. 40(2), 1599-1614. https://doi.org/10.1016/j.apm.2015.06.036.
- Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci. 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010.
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
- Kippenberg, T.J. and Vahala, K.J. (2007), "Cavity opto-mechanics", Opt. Express 15(25), 17172-17205. https://doi.org/10.1364/OE.15.017172.
- Kuila, T, Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H. (2011), "Recent advances in graphene-based biosensors", Biosensors Bioelectronics 26(12), 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039.
- Metcalfe, M. (2014), "Applications of cavity optomechanics", Appl. Phys. Rev., 1, 031105 (18 pages). https://doi.org/10.1063/1.4896029.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys. 108, 083514 (9 pages). https://doi.org/10.1063/1.3496627.
- Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.
- Naderi, A. and Saidi, A.R. (2014), "Modified nonlocal Mindlin plate theory for buckling analysis of nanoplates", J. Nanomech. Micromech., 4(4), A4013015 (8 pages). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000068.
- Navazi, H.M. and Haddadpour, H. (2008), "Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods", Int. J. Mech. Sci., 50(12), 1650-1657. https://doi.org/10.1016/j.ijmecsci.2008.08.010.
- Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., New York.
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.
- Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304.
- Park, J. and Lee, S.Y. (2003), "A new exponential plate theory for laminated composites under cylindrical bending", Trans. Japan Soc. Aero. Space Sci., 46(152), 89-95. https://doi.org/10.2322/tjsass.46.89.
- Pradhan, S.C., Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
- Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K. and Poh, H.L. (2010), "Graphene for electrochemical sensing and biosensing", Trends Analyt. Chem. 29(9), 954-965. https://doi.org/10.1016/j.trac.2010.05.011.
- Rajabi, K. and Hosseini-Hashemi, Sh. (2017a), "On the application of viscoelastic orthotropic double-nanoplates systems as nanoscale mass-sensors via the generalized Hooke's law for viscoelastic materials and Erigen's nonlocal elasticity theory", Compos. Struct. 180, 105-115. https://doi.org/10.1016/j.compstruct.2017.07.085.
- Rajabi, K. and Hosseini-Hashemi, Sh. (2017b), "A new nanoscale mass sensor based on a bilayer graphene nanoribbon: The effect of interlayer shear on frequencies shift", Comput. Mater. Sci., 126, 468-473. https://doi.org/10.1016/j.commatsci.2016.08.052.
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.11115/1.3167719.
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48, 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
- Sayyad, A.S., Ghugal, Y.M. (2016), "Cylindrical bending of multilayered composite laminates and sandwiches", Adv. Aircraft Spacecraft Sci., 3(2), 113-148. https://doi.org/10.12989/aas.2016.3.2.113.
- Sayyad, A.S., Ghumare, S.M. and Sasane, S.T. (2014), "Cylindrical bending of orthotropic plate strip based on nth-order plate theory", J. Mater. Eng. Struct., 1, 47-57.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Thai, H.T., Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
- Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2014), "A nonlocal sinusoidal plate model for micro/nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 228, 2652-2660. https://doi.org/10.1177/0954406214521391.
- Wu, C.P. and Chen, Y.J. (2019), "Cylindrical bending vibration of multiple graphene sheet systems embedded in an elastic medium", Int. J. Struct. Stab. Dyn., 19(3), 1950035 (27 pages). https://doi.org/10.1142/S0219455419500354.
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst. 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Yengejeh, S.I., Kazemi, S.A. and Ochsner, A. (2017), "Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches", Comput. Mater. Sci., 136, 85-101. https://doi.org/10.1016/j.commatsci.2017.04.023.
Cited by
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271