DOI QR코드

DOI QR Code

Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium

  • Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University) ;
  • Lin, Chih-Chen (Department of Civil Engineering, National Cheng Kung University)
  • Received : 2018.09.12
  • Accepted : 2020.02.08
  • Published : 2020.07.10

Abstract

An asymptotic local plane strain elasticity theory is reformulated for the static analysis of a simply-supported, multiple graphene sheet system (MGSS) in cylindrical bending and resting on an elastic medium. The dimension of the MGSS in the y direction is considered to be much greater than those in the x and z directions, such that all the field variables are considered to be independent of the y coordinate. Eringen's nonlocal constitutive relations are used to account for the small length scale effects in the formulation examining the static behavior of the MGSS. The interaction between the MGSS and its surrounding foundation is modelled as a Winkler foundation with the parameter kw, and the interaction between adjacent graphene sheets (GSs) is considered using another Winkler model with the parameter cw. A parametric study with regard to some effects on the static behavior of the MGSS resting on an elastic medium is undertaken, such as the aspect ratio, the number of the GSs, the stiffness of the medium between the adjacent layers and that of the surrounding medium of the MGSS, and the nonlocal parameter.

Keywords

Acknowledgement

This work was supported by the Ministry of Science and Technology of the Republic of China through Grant MOST 106-2221-E-006-036-MY3.

References

  1. Aghababaei, R., Reddy, J. N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
  2. Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Modell., 38, 5934-3955. https://doi.org/10.1016/j.apm.2014.03.036
  3. Arani, A.G., Shiravand, A., Rahi, M. and Kolahchi, R. (2012), "Nonlocal vibration of coupled DLGS systems embedded on visco-Pasternak foundation", Physica B, 407(21), 4123-4131. https://doi.org/10.1016/j.physb.2012.06.035.
  4. Bakshi, S.R., Lahiri, D. and Agarwal, A. (2010), "Carbon nanotube reinforced metal matrix composites-a review", Int. Mater. Rev., 55(1), 41-64. https://doi.org/10.1179/095066009x12572530170543.
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  6. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behavior of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.
  7. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst. 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  8. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/sss.2016.20.2.227.
  9. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  10. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York.
  11. Eringen, A.C., Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  12. Fahsi, B., Kaci, A., Tounsi, A., Bedia, E.A.A. (2012), "A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings", J. Mech. Sci. Technol., 26(12), 4073-4079. https://doi.org/10.1007/s12206-012-0907-4
  13. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  14. Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017.
  15. Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T. and Lazarevic, M. (2015), "Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field", Int. J. Mech. Sci., 96-97, 132-142. https://doi.org/10.1016/j.ijmecsci.2015.03.014.
  16. Karlicic, D., Kozic, P. and Pavlovic, R. (2016), "Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium", Appl. Math. Modell. 40(2), 1599-1614. https://doi.org/10.1016/j.apm.2015.06.036.
  17. Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci. 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010.
  18. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  19. Kippenberg, T.J. and Vahala, K.J. (2007), "Cavity opto-mechanics", Opt. Express 15(25), 17172-17205. https://doi.org/10.1364/OE.15.017172.
  20. Kuila, T, Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H. (2011), "Recent advances in graphene-based biosensors", Biosensors Bioelectronics 26(12), 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039.
  21. Metcalfe, M. (2014), "Applications of cavity optomechanics", Appl. Phys. Rev., 1, 031105 (18 pages). https://doi.org/10.1063/1.4896029.
  22. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
  23. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys. 108, 083514 (9 pages). https://doi.org/10.1063/1.3496627.
  24. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.
  25. Naderi, A. and Saidi, A.R. (2014), "Modified nonlocal Mindlin plate theory for buckling analysis of nanoplates", J. Nanomech. Micromech., 4(4), A4013015 (8 pages). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000068.
  26. Navazi, H.M. and Haddadpour, H. (2008), "Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods", Int. J. Mech. Sci., 50(12), 1650-1657. https://doi.org/10.1016/j.ijmecsci.2008.08.010.
  27. Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., New York.
  28. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.
  29. Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304.
  30. Park, J. and Lee, S.Y. (2003), "A new exponential plate theory for laminated composites under cylindrical bending", Trans. Japan Soc. Aero. Space Sci., 46(152), 89-95. https://doi.org/10.2322/tjsass.46.89.
  31. Pradhan, S.C., Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
  32. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K. and Poh, H.L. (2010), "Graphene for electrochemical sensing and biosensing", Trends Analyt. Chem. 29(9), 954-965. https://doi.org/10.1016/j.trac.2010.05.011.
  33. Rajabi, K. and Hosseini-Hashemi, Sh. (2017a), "On the application of viscoelastic orthotropic double-nanoplates systems as nanoscale mass-sensors via the generalized Hooke's law for viscoelastic materials and Erigen's nonlocal elasticity theory", Compos. Struct. 180, 105-115. https://doi.org/10.1016/j.compstruct.2017.07.085.
  34. Rajabi, K. and Hosseini-Hashemi, Sh. (2017b), "A new nanoscale mass sensor based on a bilayer graphene nanoribbon: The effect of interlayer shear on frequencies shift", Comput. Mater. Sci., 126, 468-473. https://doi.org/10.1016/j.commatsci.2016.08.052.
  35. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.11115/1.3167719.
  36. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48, 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
  37. Sayyad, A.S., Ghugal, Y.M. (2016), "Cylindrical bending of multilayered composite laminates and sandwiches", Adv. Aircraft Spacecraft Sci., 3(2), 113-148. https://doi.org/10.12989/aas.2016.3.2.113.
  38. Sayyad, A.S., Ghumare, S.M. and Sasane, S.T. (2014), "Cylindrical bending of orthotropic plate strip based on nth-order plate theory", J. Mater. Eng. Struct., 1, 47-57.
  39. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.
  40. Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.
  41. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  42. Thai, H.T., Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  43. Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2014), "A nonlocal sinusoidal plate model for micro/nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 228, 2652-2660. https://doi.org/10.1177/0954406214521391.
  44. Wu, C.P. and Chen, Y.J. (2019), "Cylindrical bending vibration of multiple graphene sheet systems embedded in an elastic medium", Int. J. Struct. Stab. Dyn., 19(3), 1950035 (27 pages). https://doi.org/10.1142/S0219455419500354.
  45. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst. 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  46. Yengejeh, S.I., Kazemi, S.A. and Ochsner, A. (2017), "Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches", Comput. Mater. Sci., 136, 85-101. https://doi.org/10.1016/j.commatsci.2017.04.023.

Cited by

  1. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271