DOI QR코드

DOI QR Code

Preparation of Melt-blending Polylactic Acid/Halloysite Nanotube Composite Films for Improvement of Tearing Strength

인열강도 향상을 위한 HNT 용융-혼합 PLA 복합체 제조 및 특성 분석

  • Kim, Taeho (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Ko, Eunjoo (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Song, Younghan (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Ahn, Jungbin (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Park, Sanghyun (Division of Chemical Engineering, Konkuk University) ;
  • Park, Sewon (Division of Chemical Engineering, Konkuk University) ;
  • Kim, Minhyung (Division of Chemical Engineering, Konkuk University) ;
  • Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University)
  • 김태호 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 고은주 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 송영한 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 안정빈 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 박상현 (건국대학교 공과대학 화학공학부) ;
  • 박세원 (건국대학교 공과대학 화학공학부) ;
  • 김민형 (건국대학교 공과대학 화학공학부) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과)
  • Received : 2020.05.25
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

Recently, polylactic acid (PLA) has gained attention owing to its advantages, such as sustainability, eco-friendliness, and biocompatibility. However, PLA has not been widely utilized because of its low mechanical properties, especially tearing strength. In this study, halloysite nanotube (HNT) added PLA composite film was prepared through melt-blending to improve the tearing strength. The tensile strength of the PLA/HNT composite films was enhanced by the filler effect, homogeneous dispersion, and good compatibility of the HNTs. Moreover, the tearing strength of the PLA composite film significantly increased from 3.8 to 5.8 N/mm when the HNT was added at 1 wt%.

Keywords

Acknowledgement

이 논문은 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-미래선도기술개발사업의 지원을 받아 수행된 연구임(No. 2018M3C1B9069748).

References

  1. W. C. Li, H. F. Tse, and L. Fok, "Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects", Sci. Total Environ., 2016, 566-567, 333-349. https://doi.org/10.1016/j.scitotenv.2016.05.084
  2. R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, and C. Laforsch, "Beyond the Ocean: Contamination of Freshwater Ecosystems with (micro-)plastic Particles", Environ. Chem., 2015, 12, 539-550 . https://doi.org/10.1071/EN14172
  3. D. Xanthos and T. R. Walker, "International Policies to Reduce Plastic Marine Pollution from Single-use Plastics (plastic bags and microbeads): A Review", Mar. Pollut. Bull., 2017, 118, 17-26. https://doi.org/10.1016/j.marpolbul.2017.02.048
  4. J. Dikgang, A. Leiman, and M. Visser, "Analysis of the Plastic-bag levy in South Africa, Resources, Conservation and Recycling", Resour. Conserv. Recy., 2012, 66, 59-65. https://doi.org/10.1016/j.resconrec.2012.06.009
  5. T. Mukherjee and N. Kao, "PLA Based Biopolymer Reinforced with Natural Fibre: a Review", J. Polym. Environ., 2011, 19, 714. https://doi.org/10.1007/s10924-011-0320-6
  6. D. Garlotta, "A Literature Review of Poly(lactic acid)", J. Polym. Environ., 2001, 9, 63-84. https://doi.org/10.1023/A:1020200822435
  7. S. Farah, D. G. Anderson, and R. Langer, "Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications-A Comprehensive Review", Adv. Drug Deliv. Rev., 2016, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
  8. Y. Cheng, S. Deng, P. Chen, and R. Ruan, “Polylactic Acid (PLA) Synthesis and Modifications: A Review”, Frontiers of Chemistry in China, 2009, 4, 259-264. https://doi.org/10.1007/s11458-009-0092-x
  9. P. K. Bajpai, I. Singh, and J. Madaan, "Development and Characterization of PLA-based Green Composites: A Review", J. Thermoplast. Compos. Mater., 2014, 27, 52-81. https://doi.org/10.1177/0892705712439571
  10. N. Mallegni, T. V. Phuong, M.-B. Coltelli, P. Cinelli, and A. Lazzeri, “Poly(lactic acid)(PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion”, Materials, 2018, 11, 148. https://doi.org/10.3390/ma11010148
  11. R. Bhardwaj and A. K. Mohanty, “Modification of Brittle Polylactide by Novel Hyperbranched Polymer-based Nanostructures”, Biomacromolecules, 2007, 8, 2476-2484. https://doi.org/10.1021/bm070367x
  12. T. Patricio and P. Bartolo, “Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process”, Procedia Engineering, 2013, 59, 292-297. https://doi.org/10.1016/j.proeng.2013.05.124
  13. C. L. Jun, "Reactive Blending of Biodegradable Polymers: PLA and Starch", J. Polym. Environ., 2000, 8, 33-37. https://doi.org/10.1023/A:1010172112118
  14. R. Al-Itry, K. Lamnawar, and A. Maazouz, "Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy", Polym. Degrad. Stabil., 2012, 97, 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
  15. R. Al-Itry, K. Lamnawar, and A. Maazouz, "Rheological, Morphological, and Interfacial Properties of Compatibilized PLA/PBAT Blends", Rheologica Acta, 2014, 53, 501-517. https://doi.org/10.1007/s00397-014-0774-2
  16. X. Li, X. Yan, J. Yang, H. Pan, G. Gao, H. Zhang, and L. Dong, "Improvement of Compatibility and Mechanical Properties of the Poly(lactic acid)/poly(butylene adipate-co-terephthalate) Blends and Films by Reactive Extrusion with Chain Extender", Polym. Eng. Sci., 2018, 58, 1868-1878. https://doi.org/10.1002/pen.24795
  17. A. Kausar, "Review on Polymer/halloysite Nanotube Nanocomposite", Polym.-Plast. Technol. Eng., 2018, 57, 548-564. https://doi.org/10.1080/03602559.2017.1329436
  18. R. Kamble, M. Ghag, S. Gaikawad, and B. K. Panda, "Halloysite Nanotubes and Applications: A Review", J. Adv. Sci. Res., 2012, 3, 25-29.
  19. M. Du, B. Guo, and D. Jia, "Newly Emerging Applications of Halloysite Nanotubes: A Review", Polym. Int., 2010, 59, 574-582. https://doi.org/10.1002/pi.2754
  20. J. M. Krishnan, A. P. Deshpande, and P. S. Kumar, "Rheology of Complex Fluids", Springer, 2010.
  21. Y. Kim, Y. Song, and H. Kim, “Preparation of Transparent Cellulose Film with Controlled Haze Using Halloysite Nanotubes”, Cellulose, 2018, 25, 1239-1248. https://doi.org/10.1007/s10570-017-1625-y
  22. Y. Dong, J. Marshall, H. J. Haroosh, S. Mohammadzadehmoghadam, D. Liu, X. Qi, and K.-T. Lau, "Polylactic Acid (PLA)/halloysite Nanotube (HNT) Composite Mats: Influence of HNT Content and Modification", Compos. Part A: Appl. Sci. Manuf., 2015, 76, 28-36. https://doi.org/10.1016/j.compositesa.2015.05.011
  23. M. H. Lee, S. Y. Kim, and H. J. Park, "Effect of Halloysite Nanoclay on the Physical, Mechanical, and Antioxidant Properties of Chitosan Films Incorporated with Clove Essential Oil", Food Hydrocolloids, 2018, 84, 58-67. https://doi.org/10.1016/j.foodhyd.2018.05.048