참고문헌
- Abbas, L.K., Chen, Q., Marzocca, P. and Milanese, A. (2008), "Non-linear aeroelastic investigations of store(s)-induced limit cycle oscillations", P. I. Mech. Eng. Part G J. Aer., 222(1), 63-80. https://doi.org/10.1243/09544100JAERO241.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Amoozgar, M.R., Irani, S. and Vio, G.A. (2013), "Aeroelastic instability of a composite wing with a powered-engine", J. Fluids Struct., 36, 70-82. https://doi.org/10.1016/j.jfluidstructs.2012.10.007.
- Asadi, H. and Wang, Q. (2017), "An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow", Compos. Part B Eng., 116, 486-499. https://doi.org/10.1016/j.compositesb.2016.10.089.
- Basu, B. and Mahanti, G.K. (2012), "Thinning of concentric two-ring circular array antenna using firefly algorithm", Scientia Iranica, 19(6), 1802-1809. https://doi.org/10.1016/j.scient.2012.06.030.
- Brouwer, K.K. and McNamara, J.J. (2020), "Surrogate-based aeroelastic loads prediction in the presence of shock induced-separation", J. Fluid. Struct., 93, 102838. https://doi.org/10.1016/j.jfluidstructs.2019.102838.
- Burdette, D.A. and Martins, J.R.R.A. (2018), "Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization", Aerosp. Sci. Technol., 81, 192-203. https://doi.org/10.1016/j.ast.2018.08.004.
- De Leon, D.M., de Souza, C.E., Fonseca, J.S.O. and da Silva, R.G.A. (2012), "Aeroelastic tailoring using fiber orientation and topology optimization", Struct. Multidisciplin. O., 46, 663-677. https://doi.org/10.1007/s00158-012-0790-8.
- Dillinger, J.K.S., Abdalla, M.M., Meddaikar, Y.M. and Klimmek, T. (2019), "Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads", CEAS Aeronaut. J., 10(4), 1015-1032. https://doi.org/10.1007/s13272-019-00397-y.
- Dunning, P.D., Stanford, B.K., Kim, H.A. and Jutte, C.V. (2014), "Aeroelastic tailoring of a plate wing with functionally graded materials", J. Fluid. Struct., 51, 292-312. https://doi.org/10.1016/j.jfluidstructs.2014.09.008.
- Fletcher, C.A.J. (1984), Computational Galerkin Methods. Springer, Berlin, Heidelberg, Germany.
- Francois, G., Cooper, J.E. and Weaver, P.M. (2017), "Aeroelastic tailoring using crenellated skins-modelling and experiment", Adv. Aircraft Spacecraft Sci., 4(2), 93-124. http://doi.org/10.12989/aas.2017.4.2.093.
- Gao, K., Li, R. and Yang, J. (2019), "Dynamic characteristics of functionally graded porous beams with interval material properties", Eng. Struct., 197, 109441. https://doi.org/10.1016/j.engstruct.2019.109441.
- Guan, X., Zhu, Y. and Song, W. (2016), "Application of RBF neural network improved by peak density function in intelligent color matching of wood dyeing", Chaos Solitons Fract., 89, 485-490. https://doi.org/10.1016/j.chaos.2016.02.015.
- Guo, S.J., Bannerjee, J.R. and Cheung, C.W. (2003), "The effect of laminate lay-up on the flutter speed of composite wings", P. I. Mech. Eng. Part G J. Aer., 217(3), 115-122. https://doi.org/10.1243/095441003322297225.
- Hodges, D.H. and Pierce, G.A. (2011), Introduction to Structural Dynamics and Aeroelasticity, Cambridge University Press, Cambridge, U.K.
- James, K.A., Kennedy, G.J. and Martins, J.R.R.A. (2014), "Concurrent aerostructural topology optimization of a wing box", Comput. Struct., 134, 1-17. https://doi.org/10.1016/j.compstruc.2013.12.007.
- Librescu, L. and Maalawi, K. (2007), "Material grading for improved aeroelastic stability in composite wings", J. Mech. Mater. Struct., 2(7), 1381-1394. https://doi.org/10.2140/jomms.2007.2.1381.
- Liu, I.W. and Lin, C.C. (1991), "Optimum design of composite wing structures by a refined optimality criterion", Compos. Struct., 17(1), 51-65. https://doi.org/10.1016/0263-8223(91)90060-C.
- Maalawi, K. (2011), "Functionally graded bars with enhanced dynamic performance", J. Mech. Mater. Struct., 6(1), 377-393. http://doi.org/10.2140/jomms.2011.6.377.
- Mazidi, A. and Fazelzadeh, S.A. (2010), "Flutter of a swept aircraft wing with a powered engine", J. Aerosp. Eng., 23(4), 243-250. http://doi.org/10.1061/(ASCE)AS.1943-5525.0000037.
- Mehri, M., Asadi, H. and Kouchakzadeh, M.A. (2017), "Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression", Comput. Meth. Appl. Mech. Eng., 318, 957-980. https://doi.org/10.1016/j.cma.2017.02.020.
- Patil, M. (1997), "Aeroelastic tailoring of composite box beams", Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, U.S.A., January.
- Qin, Z. and Librescu, L. (2003), "Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow", J. Fluid. Struct., 18(1), 43-61. http://doi.org/10.1016/S0889-9746(03)00082-3.
- Sayadi, M.K., Hafezalkotob, A. and Naini, S.G.J. (2013), "Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation", J. Manuf. Syst., 32(1), 78-84. https://doi.org/10.1016/j.jmsy.2012.06.004.
- Shukla, R. and Singh, D. (2017), "Selection of parameters for advanced machining processes using firefly algorithm", Eng. Sci. Technol., 20(1), 212-221. https://doi.org/10.1016/j.jestch.2016.06.001.
- Sommerwerk, K., Michels, B., Lindhorst, K., Haupt, M.C. and Horst, P. (2016), "Application of efficient surrogate modeling to aeroelastic analyses of an aircraft wing", Aerosp. Sci. Technol., 55, 314-323. https://doi.org/10.1016/j.ast.2016.06.011,
- Song, Z., Chen, Y., Li, Z., Sha, J. and Li, F. (2019), "Axially functionally graded beams and panels in supersonic airflow and their excellent capability for passive flutter suppression", Aerosp. Sci. Technol., 92, 668-675. https://doi.org/10.1016/j.ast.2019.06.042.
- Tsiatas, G.C. and Charalampakis, A.E. (2017), "Optimizing the natural frequencies of axially functionally graded beams and arches", Compos. Struct., 160, 256-266. https://doi.org/10.1016/j.compstruct.2016.10.057.
- Wan, Z., Yan, H., Liu, D. and Yang, C. (2005), "Aeroelastic analysis and optimization of high-aspect-ratio composite forward-swept wings", Chin. J. Aeronaut., 18(4), 317-325. https://doi.org/10.1016/S1000-9361(11)60251-3.
- Weisshaar, T.A. (1981), "Aeroelastic tailoring of forward swept composite wings", J. Aircraft, 18(8), 669-676. https://doi.org/10.2514/3.57542.
- Ziane, N., Meftah, S.A., Belhadj, H.A., Tounsi, A. and Bedia, E.A.A. (2013), "Free vibration analysis of thin and thick-walled FGM box beams", Int. J. Mech. Sci., 66, 273-282. https://doi.org/10.1016/j.ijmecsci.2012.12.001.