DOI QR코드

DOI QR Code

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature

NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서

  • Choi, Myung Sik (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Min Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Ahn, Jihye (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Seung Joon (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
  • 최명식 (연세대학교 신소재공학과) ;
  • 김민영 (연세대학교 신소재공학과) ;
  • 안지혜 (연세대학교 신소재공학과) ;
  • 최승준 (연세대학교 신소재공학과) ;
  • 이규형 (연세대학교 신소재공학과)
  • Received : 2020.05.15
  • Accepted : 2020.06.19
  • Published : 2020.06.30

Abstract

In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

본 연구에서는 Ag 금속입자가 기능화된 SnO2 나노선을 제작 및 저온 NO2 가스 센싱 특성을 평가하였다. Vapor-liquid-solid 공법을 이용하여 SnO2 나노선을 합성하였고, flame chemical vapour deposition 공법을 이용하여 Ag 금속입자를 SnO2 나노선 표면에 기능화하였다. 합성된 Ag 금속입자가 기능화된 SnO2 나노선을 이용하여 50℃에서 NO2 10 ppm에 대한 가스 센싱 테스트를 진행한 결과, 감응도(Rg/Ra) 1.252를 얻었다. 본 연구를 통하여, 금속입자가 기능화된 나노선을 이용한 저온동작 반도체식 가스센서의 산업 적용을 현실화 할 수 있을 것으로 기대된다.

Keywords

References

  1. S. G. Chatterjee, S. Chatterjee, A. K. Ray, and A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sens. Actuators B-Chem., 221, 1170 (2015). https://doi.org/10.1016/j.snb.2015.07.070
  2. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuators B-Chem., 108, 2 (2005). https://doi.org/10.1016/j.snb.2004.12.075
  3. S. Mahajan and S. Jagtap, "Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review", Appl. Mater. Today, 18, 100483 (2020). https://doi.org/10.1016/j.apmt.2019.100483
  4. A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng., B 229, 206 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
  5. R. S. E. Shamy, D. Khalil, and M. A. Swillam, "Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer", Sci. Rep., 10, 1293 (2020). https://doi.org/10.1038/s41598-020-57538-1
  6. K. M. Yoo, J. Midkiff, A. Rostamian, C. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor", ACS Sens., 5, 861 (2020). https://doi.org/10.1021/acssensors.0c00180
  7. H. Wan, Y. Gan, J. Sun, T. Liang, S. Zhou, and P. Wang, "High sensitive reduced graphene oxide-based room temperature ionic liquid electrochemical gas sensor with carbon-gold nanocomposites amplification", Sens. Actuators B-Chem., 299, 126952 (2019). https://doi.org/10.1016/j.snb.2019.126952
  8. M. A. H. Khan, M. V. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases: $NO_2,\;SO_2$ and $H_2S$", Sens., 19, 905 (2019). https://doi.org/10.3390/s19040905
  9. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira Jr., and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides", Microchim. Acta., 185, 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
  10. R. Godbole, S. Ameen, U. T. Nakate, M. S. Akhtar, and H.-S. Shin, "Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application", Mater. Lett., 254, 398 (2019). https://doi.org/10.1016/j.matlet.2019.07.110
  11. Q. Wang, J. Bai, B. Huang, Q. Hu, X. Cheng, J. Li, E. Xie, Y. Wang, and X. Pan, "Design of $NiCo_2O_4@SnO_2$ heterostructure nanofiber and their low temperature ethanol sensing properties", J. Alloys Compd., 791, 1025 (2019). https://doi.org/10.1016/j.jallcom.2019.03.364
  12. R. S. Ganesh, M. Navaneethan, V. L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P. S. Patil, and Y. Hayakawa, "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature", Sens. Actuators B-Chem., 255, 672 (2018). https://doi.org/10.1016/j.snb.2017.08.015
  13. R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc oxide nanostructures for $NO_2$ gas-sensor applications: A review", Nanomicro Lett., 7, 97 (2015).
  14. J. Y. Park, W. J. Lee, H. J. Nam, and S.-H. Choa, "Technology of stretchable interconnector and strain sensors for stretchable electronics", J. Microelectron. Packag. Soc., 25(4), 25 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.025
  15. Y. B. Shin, Y. H. Ju, and J.-W. Kim, "Technical trends of metal nanowire-based electrode", J. Microelectron. Packag. Soc., 26(4), 15 (2019).
  16. M. S. Choi, J. H. Bang, A. Mirzaei, W. Oum, H. G. Na, C. Jin, S. S. Kim, and H. W. Kim, "Promotional effects of ZnObranching and Au-functionalization on the surface of $SnO_2$ nanowires for $NO_2$ sensing", J. Alloys Compd., 786, 27 (2019). https://doi.org/10.1016/j.jallcom.2019.01.311
  17. M. S. Choi, H. G. Na, S. Kim, J. H. Bang, W. Oum, S. -W. Choi, S. S. Kim, K. H. Lee, H. W. Kim, and C. Jin, "Synthesis of Au/$SnO_2$ nanostructures allowing process variable control", Sci. Rep., 10, 346 (2020). https://doi.org/10.1038/s41598-019-57222-z
  18. M. S. Choi, J. H. Bang, A. Mirzaei, H. G. Na, C. Jin, W. Oum, S. S. Kim, and H. W. Kim, "Exploration of the use of p-$TeO_2$-branch/n-$SnO_2$ core nanowires nanocomposites for gas sensing", Appl. Surf. Sci., 484, 1102 (2019). https://doi.org/10.1016/j.apsusc.2019.04.122
  19. V. N. Singh, B. R. Mehta, R. K. Joshi, F. E. Kruis, and S. M. Shivaprasad, "Enhanced gas sensing properties of $In_2O_3$:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects", Sens. Actuators B-Chem., 125, 482 (2007). https://doi.org/10.1016/j.snb.2007.02.044
  20. J. Zhang and K. Colbow, "Surface silver clusters as oxidation catalysts on semiconductor gas sensors", Sens. Actuators B-Chem., 40, 47 (1997). https://doi.org/10.1016/S0925-4005(97)80198-0
  21. Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, "Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties", Sens. Actuators B-Chem., 143, 635 (2000).
  22. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, and S. Chen, "Enhancement of ethanol vapor sensing of $TiO_2$ nanobelts by surface engineering", ACS Appl. Mater. Interfaces., 2, 3263 (2010). https://doi.org/10.1021/am100707h
  23. Z. Wen, L, Tian-mo, and L. De-jun, "Formaldehyde gas sensing property and mechanism of $TiO_2$-Ag nanocomposite", Physica B-Condens. Matter, 405, 4235 (2010). https://doi.org/10.1016/j.physb.2010.07.017
  24. J. Wang, B. Zou, S. Ruan, J. Zhao, and F. Wu, "Synthesis, characterization, and gas-sensing property for HCHO of Agdoped $In_2O_3$ nanocrystalline powders", Mater. Chem. Phys., 117, 489 (2009). https://doi.org/10.1016/j.matchemphys.2009.06.045
  25. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, and S. Wu, "Low-temperature $H_2S$ sensors based on Ag-doped ${\alpha}-Fe_2O_3$ nanoparticles", Sens. Actuators B-Chem., 131, 183 (2008). https://doi.org/10.1016/j.snb.2007.11.002
  26. Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y.Q. Fu, and Z. Wang, "Hydrothermally synthesized $CeO_2$ nanowires for $H_2S$ sensing at room temperature", J. Alloys Compd., 682, 647 (2016). https://doi.org/10.1016/j.jallcom.2016.04.311
  27. J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Low power-consumption CO gas sensors based on Au-functionalized $SnO_2$-ZnO core-shell nanowires", Sens. Actuators B-Chem., 267, 597 (2018). https://doi.org/10.1016/j.snb.2018.04.079
  28. S.-W. Choi, S.-H. Jung, J. Y. Park, and S. S. Kim, "Improvement in sensing properties of $SnO_2$ nanowires by functionalizing with Pt nanodots synthesized by ${\gamma}$-ray radiolysis", J. Nanosci. Nanotechno., 12, 1526 (2012). https://doi.org/10.1166/jnn.2012.4610
  29. L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, and C. Wei, "A novel low temperature gas sensor based on Pt-decorated hierarchical 3D $SnO_2$ nanocomposites", Sens. Actuators B-Chem., 232, 91 (2016). https://doi.org/10.1016/j.snb.2016.02.135
  30. A. S. M. I. Uddin, D.-T. Phan, and G.-S. Chung, "Low temperature acetylene gas sensor based on Ag nanoparticlesloaded ZnO-reduced graphene oxide hybrid", Sens. Actuators B-Chem., 207, 362 (2015). https://doi.org/10.1016/j.snb.2014.10.091
  31. F. Wang, K. Hu, H. Liu, Q. Zhao, K. Wang, and Y. Zhang, "Low temperature and fast response hydrogen gas sensor with Pd coated $SnO_2$ nanofiber rods", Int. J. Hydrog. Energy, 45, 7234 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.152
  32. S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Jpn. J. Appl. Phys., 27, 1798 (1988). https://doi.org/10.1143/JJAP.27.1798
  33. X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, "Highly sensitive VOCs-acetone sensor based on Agdecorated $SnO_2$ hollow nanofibers", J. Alloys Compd., 703, 572 (2017). https://doi.org/10.1016/j.jallcom.2017.01.348