References
- S. G. Chatterjee, S. Chatterjee, A. K. Ray, and A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sens. Actuators B-Chem., 221, 1170 (2015). https://doi.org/10.1016/j.snb.2015.07.070
- N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuators B-Chem., 108, 2 (2005). https://doi.org/10.1016/j.snb.2004.12.075
- S. Mahajan and S. Jagtap, "Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review", Appl. Mater. Today, 18, 100483 (2020). https://doi.org/10.1016/j.apmt.2019.100483
- A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng., B 229, 206 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
- R. S. E. Shamy, D. Khalil, and M. A. Swillam, "Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer", Sci. Rep., 10, 1293 (2020). https://doi.org/10.1038/s41598-020-57538-1
- K. M. Yoo, J. Midkiff, A. Rostamian, C. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor", ACS Sens., 5, 861 (2020). https://doi.org/10.1021/acssensors.0c00180
- H. Wan, Y. Gan, J. Sun, T. Liang, S. Zhou, and P. Wang, "High sensitive reduced graphene oxide-based room temperature ionic liquid electrochemical gas sensor with carbon-gold nanocomposites amplification", Sens. Actuators B-Chem., 299, 126952 (2019). https://doi.org/10.1016/j.snb.2019.126952
-
M. A. H. Khan, M. V. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases:
$NO_2,\;SO_2$ and$H_2S$ ", Sens., 19, 905 (2019). https://doi.org/10.3390/s19040905 - N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira Jr., and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides", Microchim. Acta., 185, 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
- R. Godbole, S. Ameen, U. T. Nakate, M. S. Akhtar, and H.-S. Shin, "Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application", Mater. Lett., 254, 398 (2019). https://doi.org/10.1016/j.matlet.2019.07.110
-
Q. Wang, J. Bai, B. Huang, Q. Hu, X. Cheng, J. Li, E. Xie, Y. Wang, and X. Pan, "Design of
$NiCo_2O_4@SnO_2$ heterostructure nanofiber and their low temperature ethanol sensing properties", J. Alloys Compd., 791, 1025 (2019). https://doi.org/10.1016/j.jallcom.2019.03.364 - R. S. Ganesh, M. Navaneethan, V. L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P. S. Patil, and Y. Hayakawa, "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature", Sens. Actuators B-Chem., 255, 672 (2018). https://doi.org/10.1016/j.snb.2017.08.015
-
R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc oxide nanostructures for
$NO_2$ gas-sensor applications: A review", Nanomicro Lett., 7, 97 (2015). - J. Y. Park, W. J. Lee, H. J. Nam, and S.-H. Choa, "Technology of stretchable interconnector and strain sensors for stretchable electronics", J. Microelectron. Packag. Soc., 25(4), 25 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.025
- Y. B. Shin, Y. H. Ju, and J.-W. Kim, "Technical trends of metal nanowire-based electrode", J. Microelectron. Packag. Soc., 26(4), 15 (2019).
-
M. S. Choi, J. H. Bang, A. Mirzaei, W. Oum, H. G. Na, C. Jin, S. S. Kim, and H. W. Kim, "Promotional effects of ZnObranching and Au-functionalization on the surface of
$SnO_2$ nanowires for$NO_2$ sensing", J. Alloys Compd., 786, 27 (2019). https://doi.org/10.1016/j.jallcom.2019.01.311 -
M. S. Choi, H. G. Na, S. Kim, J. H. Bang, W. Oum, S. -W. Choi, S. S. Kim, K. H. Lee, H. W. Kim, and C. Jin, "Synthesis of Au/
$SnO_2$ nanostructures allowing process variable control", Sci. Rep., 10, 346 (2020). https://doi.org/10.1038/s41598-019-57222-z -
M. S. Choi, J. H. Bang, A. Mirzaei, H. G. Na, C. Jin, W. Oum, S. S. Kim, and H. W. Kim, "Exploration of the use of p-
$TeO_2$ -branch/n-$SnO_2$ core nanowires nanocomposites for gas sensing", Appl. Surf. Sci., 484, 1102 (2019). https://doi.org/10.1016/j.apsusc.2019.04.122 -
V. N. Singh, B. R. Mehta, R. K. Joshi, F. E. Kruis, and S. M. Shivaprasad, "Enhanced gas sensing properties of
$In_2O_3$ :Ag composite nanoparticle layers; electronic interaction, size and surface induced effects", Sens. Actuators B-Chem., 125, 482 (2007). https://doi.org/10.1016/j.snb.2007.02.044 - J. Zhang and K. Colbow, "Surface silver clusters as oxidation catalysts on semiconductor gas sensors", Sens. Actuators B-Chem., 40, 47 (1997). https://doi.org/10.1016/S0925-4005(97)80198-0
- Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, "Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties", Sens. Actuators B-Chem., 143, 635 (2000).
-
P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, and S. Chen, "Enhancement of ethanol vapor sensing of
$TiO_2$ nanobelts by surface engineering", ACS Appl. Mater. Interfaces., 2, 3263 (2010). https://doi.org/10.1021/am100707h -
Z. Wen, L, Tian-mo, and L. De-jun, "Formaldehyde gas sensing property and mechanism of
$TiO_2$ -Ag nanocomposite", Physica B-Condens. Matter, 405, 4235 (2010). https://doi.org/10.1016/j.physb.2010.07.017 -
J. Wang, B. Zou, S. Ruan, J. Zhao, and F. Wu, "Synthesis, characterization, and gas-sensing property for HCHO of Agdoped
$In_2O_3$ nanocrystalline powders", Mater. Chem. Phys., 117, 489 (2009). https://doi.org/10.1016/j.matchemphys.2009.06.045 -
Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, and S. Wu, "Low-temperature
$H_2S$ sensors based on Ag-doped${\alpha}-Fe_2O_3$ nanoparticles", Sens. Actuators B-Chem., 131, 183 (2008). https://doi.org/10.1016/j.snb.2007.11.002 -
Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y.Q. Fu, and Z. Wang, "Hydrothermally synthesized
$CeO_2$ nanowires for$H_2S$ sensing at room temperature", J. Alloys Compd., 682, 647 (2016). https://doi.org/10.1016/j.jallcom.2016.04.311 -
J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Low power-consumption CO gas sensors based on Au-functionalized
$SnO_2$ -ZnO core-shell nanowires", Sens. Actuators B-Chem., 267, 597 (2018). https://doi.org/10.1016/j.snb.2018.04.079 -
S.-W. Choi, S.-H. Jung, J. Y. Park, and S. S. Kim, "Improvement in sensing properties of
$SnO_2$ nanowires by functionalizing with Pt nanodots synthesized by${\gamma}$ -ray radiolysis", J. Nanosci. Nanotechno., 12, 1526 (2012). https://doi.org/10.1166/jnn.2012.4610 -
L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, and C. Wei, "A novel low temperature gas sensor based on Pt-decorated hierarchical 3D
$SnO_2$ nanocomposites", Sens. Actuators B-Chem., 232, 91 (2016). https://doi.org/10.1016/j.snb.2016.02.135 - A. S. M. I. Uddin, D.-T. Phan, and G.-S. Chung, "Low temperature acetylene gas sensor based on Ag nanoparticlesloaded ZnO-reduced graphene oxide hybrid", Sens. Actuators B-Chem., 207, 362 (2015). https://doi.org/10.1016/j.snb.2014.10.091
-
F. Wang, K. Hu, H. Liu, Q. Zhao, K. Wang, and Y. Zhang, "Low temperature and fast response hydrogen gas sensor with Pd coated
$SnO_2$ nanofiber rods", Int. J. Hydrog. Energy, 45, 7234 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.152 - S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Jpn. J. Appl. Phys., 27, 1798 (1988). https://doi.org/10.1143/JJAP.27.1798
-
X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, "Highly sensitive VOCs-acetone sensor based on Agdecorated
$SnO_2$ hollow nanofibers", J. Alloys Compd., 703, 572 (2017). https://doi.org/10.1016/j.jallcom.2017.01.348