과제정보
The work in this paper was supported by the National Natural Science Foundation of China (No. 51708384), Natural Science Foundation of Shanxi Province, China (No.201801D221216 and No.201901D211017), Science & Technology Project of State Grid Shandong Electric Power Company (No. 52062519001A), and Science & Technology Project for Oversea Scholars in Shanxi Province (No. DC1900000602).
참고문헌
- Bebera V.C., Schneidera B. and Bredea M. (2019), "Efficient critical distance approach to predict the fatigue lifetime of structural adhesive joints", Eng. Fract. Mech., in press. 10.1016/j.engfracmech.2019.03.022.
- Beretta, S., Bernasconi, A. and Carboni, M. (2009), "Fatigue assessment of root failures in HSLA steel welded joints: a comparison among local approaches", Int. J. Fatigue, 31, 102-110. 10.1016/j.ijfatigue.2008.05.027.
- Benedetti, M. and Santu,s C. (2019), "Mean stress and plasticity effect prediction on notch fatigue and crack growth threshold, combining the theory of critical distances and multiaxial fatigue criteria", Fatigue Fract. Eng. Mater. Struct., 42(6), 1228-1246. 10.1111/ffe.12910.
- Det Norske Veritas (2011), Fatigue design of offshore steel structures. Recommended practice DNV-RP-C203.
- International Institute of Welding (2016), Recommendations for fatigue design of welded joints and components, IIW Joint Working Group, 2nd IIW-2259-15.
- Fricke, W. (2012), IIW Recommendations for the fatigue assessment of welded structures by notch stress analysis, Woodhead Publishing Limited, UK.
- Han, Q.H. and Liu, X.L. (2004), "Ultimate bearing capacity of the welded hollow spherical joints in spatial reticulated structures," Eng. Struct., 26(1), 73-82. 10.1016/j.engstruct.2003.08.012.
- JGJ 7-2010 (2010), Technical Specification for Space Frame Structures, Ministry of Housing and Urban-Rural Construction of China, Beijing, Beijing, China. (in Chinese)
- Jiao J.F., Lei, H.G. and Chen Y.F. (2018), "Numerical simulation and experimental study on constant amplitude fatigue behavior of welded cross plate-hollow sphere joints", J. Southeast Univ. (Engl. Ed.), 34(1), 62-70. 10.3969/j.issn.1003-7985.2018.01.010.
- Kim I.J., et al. (2014), "Stress concentration factors of N-joints of concrete-filled tubes subjected to axial loads", Int. J. Steel Struct., 14(1), 1-11. 10.1007/s13296-014- 1001-9
- Lawrence, F.V., Ho, N.J. and Mazumdar, P.K. (1981), "Predicting the fatigue resistance of welds", Annu. Rev. Mater. Sci., 11, 401-425. https://doi.org/10.1146/annurev.ms.11.080181.002153
- Li G., et al. (2017), "A methodology for assessing fatigue life of a countersunk riveted lap joint", Adv. Aircr. Spacecr. Sci., 4(1), 1- https://doi.org/10.12989/aas.2017.4.1.001.
- Liu H.B., et al. (2018), "Ultimate tensile and compressive performances of welded hollow spherical joints with H-beam", J. Constr. Steel. Res., 150, 195-208. 10.1016/j.jcsr.2018.08.018.
- Louks R., Gerin B., Draper J., Askes H. and Susmel L. (2014), "On the multiaxial fatigue assessment of complex three-dimensional stress concentrators", Int. J. Fatigue, 63,12-24. 10.1016/j.ijfatigue.2014.01.001.
- Luo, Y., Wang, Q., Liu, Y. and Huang, C. (2012), "Low cycle fatigue properties of steel structure materials Q235 and Q345", J. Sichuan Univ., Eng. Sci. Ed., 44(2), 169-175. (in Chinese). 10.15961/j.jsuese.2012.02.012.
- Pecnik, M., Nagode, M. and Seruga, D. (2019), "Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam", Struct. Eng. Mech., 70(1), 33-41. https://doi.org/10.12989/sem.2019.70.1.033.
- Radaj, D. and Sonsino, C. (2006) Fatigue Assessment of Welded Joints by Local Approaches, Hamburg University of Technology, Germany.
- Santecchia E., et al. (2016), "A review on fatigue life prediction methods for metals", Adv. Mater. Sci. Eng., 2016, 1-26. 10.1155/2016/9573524
- Schijve J. (2009) Fatigue of Structures and Materials (Second Edition), Springer, Dordrecht.
- Susmel, L. and Taylor, D. (2007), "A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime", Fatigue Fract. Eng. Mater. Struct., 30(7), 567-581. 10.1111/j.1460-2695.2007.01122.x.
- Taylor, D. (2004), "Predicting the fracture strength of ceramic materials using the theory of critical distances", Eng. Fract. Mech., 71, 2407-2416. 10.1016/j.engfracmech.2004.01.002.
- Taylor, D. (2007) The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier Science.
- Tizani, W., Rahman, N.A. and Pitrakkos, T. (2014), "Fatigue life of an anchored blind-bolt loaded in tension", J. Constr. Steel Res., 93, 1-8. 10.1016/j.jcsr.2013.10.002.
- Wang F., Tian S.J. and Lei H.G. (2018), "Impact analysis of residual stress on fatigue strength of steel pipe-welded hollow spherical joints", Build. Struct., 48(1), 456-460. 10.19701/j.jzjg.2018.s1.105.
- Wang, Z., Wang, Q., Xue, H. and Liu, X. (2016), "Low cycle fatigue response of bolted T-stub connections to HSS columns - Experimental study", J. Constr. Steel Res., 119, 216-232. 10.1016/j.jcsr.2015.12.009
- Yan, Y.J. (2013), "The analysis and testing study on fatigue properties of the steel pipe-welded hollow spherical joints in space latticed structure", Ph.D. Dissertation, Taiyuan University of Technology, China. (in Chinese)
- Yang, X. and Lei, H.G. (2017), "Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints", Steel Compos. Struct., 25(5), 571-579. https://doi.org/10.12989/scs.2017.25.5.571.
- Zamzami I.A. and Susmel L. (2018), "On the use of hot-spot stresses, effective notch stresses and the point method to estimate lifetime of inclined welds subjected to uniaxial fatigue loading", Int. J. Fatigue, 117, 432-449. 10.1016/j.ijfatigue.2018.08.032.
- Zhang J.L., Lei, H.G. and Jin, S.H. (2019), "Experimental study on constant-amplitude fatigue performance of weld toe in steel tube of welded hollow spherical joints in grid structures", Adv. Mater. Sci. Eng., 2019, 1-12. 10.1155/2019/6204302.