DOI QR코드

DOI QR Code

Application of the BMORE Plot to Analyze Simulation Output Data with Bivariate Performance Measures

이변량 성과척도를 가지는 시뮬레이션 결과 분석을 위한 BMORE 도표의 활용

  • Received : 2020.05.04
  • Accepted : 2020.05.29
  • Published : 2020.06.30

Abstract

Bivariate measure of risk and error(BMORE) plot is originally designed to depict bivariate output data and related statistics obtained from a stochastic simulation such as sample mean, median, outliers, and a boundary of a certain percentile of simulation data. When compared to the static numbers, the plot has a big advantage in visualization that enables scholars and practitioners to understand the potential variability and risk in the simulation data. In this study, beyond just the construction of the plot to depict the variability of a certain system, we add a chance constraint to the plot and apply it for decision making such as checking the feasibility of systems, comparing performances of the systems on statistical background, and also analyzing the sensitivity of the problem parameters. In order to demonstrate an application of the plot, we employ an inventory management problem as an example. However, the techniques and algorithms suggested in this paper can be applied to any other problems comparing systems on bivariate performance measures with simulation/experiment results.

BMORE(Bivariate measure of risk and error) 도표는 본래 확률적 시뮬레이션에서의 이변량 성과 데이터와, 그와 관계된 표본 평균, 중앙값, 이상점, 특정 백분위 내의 결과 데이터의 범위 등과 같은 통계량들을 시각화하기 위해 설계되었으며, 정적인 정보들만 제공하는 것에 비해 사용자들이 시뮬레이션 결과 데이터에 담긴 가변성을 더욱 직관적으로 쉽게 이해할 수 있도록 돕는다. 본 연구에서는 BMORE 도표를 단순히 한 시스템의 가변성을 시각화하기 위한 것이 아닌, 특정 확률적 제약 아래 대상 시스템들의 실행 가능성을 타진하고, 통계적 배경 아래 여러 시스템들의 성과 비교를 행하며, 매개변수들의 민감도 분석을 실시하기 위한 의사결정 도구로써 활용할 수 있음을 보이고 이를 위한 여러 방안을 제안한다. 그 활용 예시를 보이고자 본 연구에서는 간단한 재고 관리 문제를 차용하였으나, 제시된 방안들 자체는 이변량 성과 척도를 가지는 시뮬레이션/실험 데이터를 근거로하여 여러 시스템들을 비교하는 문제라면 어디든 사용될 수 있음을 밝혀둔다.

Keywords

References

  1. Alexopoulos, C. and Kelton, W. D., "A Concise History of Simulation Output Analysis", Proceedings of the 2017 Winter Simulation Conference, Las Vegas, Nevada, USA, pp. 115-130, 2017.
  2. Belyi, D. and Damien, P., "Bayesian Non-Parametric Simulation of Hazard Functions", Proceedings of the 2009 Winter Simulation Conference, Austin, Texas, USA, pp. 475-482, 2009.
  3. Buzacott, J. A. and Shanthikumar. J. G., Stochastic Models of Manufacturing Systems (Vol. 4), Englewood Cliffs, NJ, USA, 1993.
  4. Chambers, J. M., Graphical methods for data analysis: 0, Chapman and Hall/CRC, 2017.
  5. Cohen, D. J. and Cohen, J., "The sectioned density plot", The American Statistician, vol. 60, pp. 167-174, 2006. https://doi.org/10.1198/000313006X108972
  6. Kelton, W. D., Smith, J. S., and Sturrock, D. T., Simio and Simulation: Modeling, Analysis, Applications, SIMIO LLC, 2014.
  7. Lee, M. L. and Park, C., "The Bivariate Measure of Risk and Error Plot", Proceedings of the 2015 Winter Simulation Conference, Huntington Beach, California, USA, pp. 484-492, 2015.
  8. Mason, R. L. and Young, J. C., Multivariate Statistical Process Control with Industrial Applications, Society for Industrial and Applied Mathematics Philadelphia (SIAM), PA, USA, 2002.
  9. Nelson, B. L., "The MORE Plot: Displaying, Measures of Risk and Error from Simulation Output", Proceedings of the 2008 Winter Simulation Conference, Piscataway, New Jersey, USA, pp. 413-416, 2008.
  10. Nelson, B., Foundations and methods of stochastic simulation: a first course, Springer Science & Business Media, 2013.
  11. Potter, K., The visualization of uncertainty, The University of Utah, 2010.
  12. Potter, K., Hagen, H., Kerren, A., and Dannenmann, P., "Methods for Presenting Statistical Information: The Box Plot", Visualization of large and unstructured data sets, Vol. 4, pp. 97-106, 2006.
  13. Rousseeuw, P. J. and Ruts, I., "Algorithm AS 307: Bivariate Location Depth", Applied Statistics (JRSS-C), Vol. 45, pp. 516-526, 1996. https://doi.org/10.2307/2986073
  14. Rousseeuw, P. J., Ruts, I., and Tukey, J. W., "The Bag Plot: a Bivariate Boxplot", The American Statistician, Vol. 53, pp. 382-387, 1999. https://doi.org/10.2307/2686061
  15. Tukey, J. W., "Mathematics and the Picturing of Data", Proceedings of the International Congress of Mathematics, Vol. 2, pp. 523-531, 1975.