DOI QR코드

DOI QR Code

Microvascular reconstruction for maxillofacial defects: a retrospective analysis of outcomes and complications in 121 consecutive cases

  • Kim, SeongRyoung (Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan) ;
  • Lee, Dong-Hun (Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan) ;
  • Ahn, Kang-Min (Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan)
  • Received : 2020.07.09
  • Accepted : 2020.08.12
  • Published : 2020.12.31

Abstract

Background: Microvascular reconstruction is the treatment of choice after oral cancer ablation surgery. There are few published studies of free flap survival among Korean populations. This study aimed to determine the survival rate after 121 consecutive cases of maxillofacial microvascular reconstruction and to analyze the complications associated with microsurgery. Methods: This study included consecutive patients who underwent microsurgical reconstruction with free flaps, from January 2006 through September 2019, performed by a single surgeon at the oral and maxillofacial surgery department of a tertiary medical center. A total of 121 cases were reviewed retrospectively. The flap survival rate, flap type, radiotherapy history, complications, and treatment results were analyzed. Results: Four different flap types were used for microvascular reconstruction: radial forearm (n = 65), fibula (n = 34), latissimus dorsi (n = 21), and serratus anterior muscle with rib bone free flap (n = 1). Total necrosis of the flap was found in four cases (two latissimus dorsi flaps and two fibular flaps). The free flap survival rate was 97.5%. Nineteen patients received radiotherapy before surgery, and none of them experienced flap failure. The mean operation time was 334 ± 83.1 min, and the mean ischemic time was 48.9 ± 12.7 min. Conclusions: The success rate was reliable and comparable with previous studies. The success rate was not affected by radiation therapy. Free flaps can be safely used even after radiation treatment.

Keywords

References

  1. Anand R, Ethunandan M, Pratt C (2006) Re: Kissun D, Shaw R J, Vaughan E D. survival of a free flap after arterial disconnection at six days. Br J Oral Maxillofac Surg 2004;42:163-5. Br J Oral Maxillofac Surg 44:338-339
  2. Blanchaert RH Jr (2012) Survival after free flap reconstruction in patients with advanced oral squamous cell carcinoma. J Oral Maxillofac Surg 70:460
  3. Castling B, Avery C (2003) Re: Godden DRP, Thomas SJ. Survival of a free flap after vascular disconnection at 9 days. Br J Oral Maxillofac Surg 2002; 40 : 446-447. Br J Oral Maxillofac Surg 41:281-281
  4. Ch'ng S, Choi V, Elliott M, Clark JR (2014) Relationship between postoperative complications and survival after free flap reconstruction for oral cavity squamous cell carcinoma. Head Neck 36:55-59
  5. de Vicente JC, Rodriguez-Santamarta T, Rosado P, Pena I, de Villalain L (2012) Survival after free flap reconstruction in patients with advanced oral squamous cell carcinoma. J Oral Maxillofac Surg 70:453-459
  6. Li BH, Jung HJ, Choi SW, Kim SM, Kim MJ, Lee JH (2012) Latissimus dorsi (LD) free flap and reconstruction plate used for extensive maxillo-mandibular reconstruction after tumor ablation. J Craniomaxillofac Surg 40:e293-e300
  7. Marchetti C, Pizzigallo A, Cipriani R, Campobassi A, Badiali G (2008) Does microvascular free flap reconstruction in oral squamous cell carcinoma improve patient survival? Otolaryngol Head Neck Surg 139:775-780
  8. Lin TR, Yang CI, Wu CY, Liao YM (2013) Project to improve the free flap survival rate in oral cancer microreconstruction free flap surgery. Hu Li Za Zhi 60:68-75
  9. Zhang X, Li MJ, Fang QG, Sun CF (2014) A comparison between the pectoralis major myocutaneous flap and the free anterolateral thigh perforator flap for reconstruction in head and neck cancer patients: assessment of the quality of life. J Craniofac Surg 25:868-871
  10. Futran ND, Mendez E (2006) Developments in reconstruction of midface and maxilla. Lancet Oncol 7:249-258
  11. de Bree R, Rinaldo A, Genden EM, Suarez C, Rodrigo JP, Fagan JJ et al (2008) Modern reconstruction techniques for oral and pharyngeal defects after tumor resection. Eur Arch Otorhinolaryngol 265:1-9
  12. Neligan PC (2013) Head and neck reconstruction. Plast Reconstr Surg 131:260e-269e
  13. Markey J, Knott PD, Fritz MA, Seth R (2015) Recent advances in head and neck free tissue transfer. Curr Opin Otolaryngol Head Neck Surg 23:297-301
  14. Borah GL, Hidalgo DA, Wey PD (1995) Reconstruction of extensive scalp defects with rectus free flaps. Ann Plast Surg 34:281-285 discussion 285-287
  15. Sweeny L, Eby B, Magnuson JS, Carroll WR, Rosenthal EL (2012) Reconstruction of scalp defects with the radial forearm free flap. Head Neck Oncol 4:21
  16. Khouri RK, Shaw WW (1989) Reconstruction of the lower extremity with microvascular free flaps: a 10-year experience with 304 consecutive cases. J Trauma 29:1086-1094
  17. Gusenoff JA, Vega SJ, Jiang S, Behnam AB, Sbitany H, Herrera HR et al (2006) Free tissue transfer: comparison of outcomes between university hospitals and community hospitals. Plast Reconstr Surg 118:671-675
  18. Almadori G, Rigante M, Bussu F, Parrilla C, Gallus R, Barone Adesi L et al (2015) Impact of microvascular free flap reconstruction in oral cavity cancer: our experience in 130 cases. Acta Otorhinolaryngol Ital 35:386-393
  19. Tarsitano A, Ciocca L, Cipriani R, Scotti R, Marchetti C (2015) Mandibular reconstruction using fibula free flap harvested using a customised cutting guide: how we do it. Acta Otorhinolaryngol Ital 35:198-201
  20. Fogarty BJ, Khan K, Ashall G, Leonard AG (1999) Complications of long operations: a prospective study of morbidity associated with prolonged operative time (> 6 h). Br J Plast Surg 52:33-36
  21. Procter LD, Davenport DL, Bernard AC, Zwischenberger JB (2010) General surgical operative duration is associated with increased risk-adjusted infectious complication rates and length of hospital stay. J Am Coll Surg 210(60-65):e61-e62
  22. Brady JS, Desai SV, Crippen MM, Eloy JA, Gubenko Y, Baredes S et al (2018) Association of anesthesia duration with complications after microvascular reconstruction of the head and neck. JAMA Facial Plast Surg 20:188-195
  23. Lin JA, Loh CYY, Tsai CH, Chang KP, Wu JC, Kao HK (2019) Free flap outcomes of microvascular reconstruction after repeated segmental mandibulectomy in head and neck cancer patients. Sci Rep 9:7951
  24. Mucke T, Ritschl LM, Roth M, Gull FD, Rau A, Grill S et al (2016) Predictors of free flap loss in the head and neck region: a four-year retrospective study with 451 microvascular transplants at a single Centre. J Craniomaxillofac Surg 44:1292-1298
  25. Wahmann M, Wahmann M, Henn D, Xiong L, Hirche C, Harhaus L et al (2020) Geriatric patients with free flap reconstruction: a comparative clinical analysis of 256 cases. J Reconstr Microsurg 36:127-135
  26. Crawley MB, Sweeny L, Ravipati P, Heffelfinger R, Krein H, Luginbuhl A et al (2019) Factors associated with free flap failures in head and neck reconstruction. Otolaryngol Head Neck Surg 161:598-604
  27. Torabi SJ, Chouairi F, Dinis J, Alperovich M (2020) Head and neck reconstructive surgery: characterization of the one-team and two-team approaches. J Oral Maxillofac Surg 78:295-304
  28. Hardy KL, Davis KE, Constantine RS, Chen M, Hein R, Jewell JL et al (2014) The impact of operative time on complications after plastic surgery: a multivariate regression analysis of 1753 cases. Aesthet Surg J 34:614-622
  29. Herle P, Shukla L, Morrison WA, Shayan R (2015) Preoperative radiation and free flap outcomes for head and neck reconstruction: a systematic review and meta-analysis. ANZ J Surg 85:121-127
  30. Benatar MJ, Dassonville O, Chamorey E, Poissonnet G, Ettaiche M, Pierre CS et al (2013) Impact of preoperative radiotherapy on head and neck free flap reconstruction: a report on 429 cases. J Plast Reconstr Aesthet Surg 66:478-482
  31. Cheng SW, Wu LL, Ting AC, Lau H, Lam LK, Wei WI (1999) Irradiationinduced extracranial carotid stenosis in patients with head and neck malignancies. Am J Surg 178:323-328
  32. Yoshimoto S, Kawabata K, Mitani H (2010) Factors involved in free flap thrombosis after reconstructive surgery for head and neck cancer. Auris Nasus Larynx 37:212-216
  33. Gordin EA, Ducic Y (2014) Microvascular free tissue reconstruction in the patient with multiple courses of radiation. Laryngoscope 124:2252-2256
  34. Nahabedian MY, Singh N, Deune EG, Silverman R, Tufaro AP (2004) Recipient vessel analysis for microvascular reconstruction of the head and neck. Ann Plast Surg 52:148-155 discussion 156-147
  35. Ferrari S, Copelli C, Bianchi B, Ferri A, Poli T, Ferri T et al (2013) Free flaps in elderly patients: outcomes and complications in head and neck reconstruction after oncological resection. J Craniomaxillofac Surg 41:167-171
  36. Tarsitano A, Pizzigallo A, Sgarzani R, Oranges CM, Cipriani R, Marchetti C (2012) Head and neck cancer in elderly patients: is microsurgical free-tissue transfer a safe procedure? Acta Otorhinolaryngol Ital 32:371-375
  37. Ross DA, Chow JY, Shin J, Restifo R, Joe JK, Sasaki CT et al (2005) Arterial coupling for microvascular free tissue transfer in head and neck reconstruction. Arch Otolaryngol Head Neck Surg 131:891-895
  38. Fukuiwa T, Nishimoto K, Hayashi T, Kurono Y (2008) Venous thrombosis after microvascular free-tissue transfer in head and neck cancer reconstruction. Auris Nasus Larynx 35:390-396
  39. Ozbek MR, Deune EG, Cooley BC, Khouri RK (1994) Experimental reproduction of free flap errors: a new model of thrombosis. Ann Plast Surg 32:474-477
  40. Seo MH, Kim SM, Huan F, Myoung H, Lee JH, Lee SK (2015) Analysis of microvascular free flap failure focusing on the microscopic findings of the anastomosed vessels. J Craniofac Surg 26:2047-2051
  41. Yii NW, Evans GR, Miller MJ, Reece GP, Langstein H, Chang D et al (2001) Thrombolytic therapy: what is its role in free flap salvage? Ann Plast Surg 46:601-604

Cited by

  1. Titanium mesh and pedicled buccal fat pad for the reconstruction of maxillary defect: case report vol.43, pp.1, 2020, https://doi.org/10.1186/s40902-021-00295-6