Acknowledgement
LT and KM acknowledge the financial support from the National Institute of Dental & Craniofacial Research of the National Institutes of Health under award number R15DE027533.
References
- Singh VP, Moss TP (2015) Psychological impact of visible differences in patients with congenital craniofacial anomalies. Prog Orthod 16:5-5. https://doi.org/10.1186/s40510-015-0078-9
- Elsalanty ME, Genecov DG (2009) Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2(3):125-134. https://doi.org/10.1055/s0029-1215875
- Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445-2461. https://doi.org/10.1007/s10856-014-5240-2
- Oppenheimer AJ, Tong L, Buchman SR (2008) Craniofacial bone grafting: Wolff's law revisited. Craniomaxillofac Trauma Reconstr 1(1):49-61. https://doi.org/10.1055/s-0028-1098963
- Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2(Suppl 2):S96-S101. https://doi.org/10.1007/s005860100282
- Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials (Basel) 12(17):2660. https://doi.org/10.3390/ma12172660
- Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials 12:2660. https://doi.org/10.3390/ma12172660
- Mittal Y, Jindal G, Garg S (2016) Bone manipulation procedures in dental implants. Indian J Dent 7(2):86-94. https://doi.org/10.4103/0975-962X.184650
- Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363-408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10
- Kargozar S, Hashemian S, Soleimani M, Milan P, Askari M, Khalaj V, Samadikuchaksaraei A, Hamzehlou S, Katebi A, Latifi N, Mozafari M, Baino F (2017) Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering: C 1:688-698. https://doi.org/10.1016/j.msec.2017.02.097
- Awad HA, O'Keefe RJ, Lee CH, Mao JJ (2014) Chapter 83 - bone tissue engineering: clinical challenges and emergent advances in orthopedic and craniofacial surgery. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering (Fourth Edition). Academic Press, Boston, pp 1733-1743. doi: https://doi.org/10.1016/B978-0-12-398358-9.00083-5
- O'Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Materials Today 14(3):88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
- Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6(2):90-99
- Chocholata P, Kulda V, Babuska V (2019) Fabrication of Scaffolds for bone-tissue regeneration. Materials 12(4). https://doi.org/10.3390/ma12040568
- Nyberg E, Rindone A, Dorafshar A, Grayson W (2016) Comparison of 3D-printed poly- -caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue engineering Part A 23. https://doi.org/10.1089/ten.TEA.2016.0418
- Scheitz CJF, Peck LJ, Groban ES (2018) Biotechnology software in the digital age: are you winning? Journal of Industrial Microbiology & Biotechnology 45(7):529-534. https://doi.org/10.1007/s10295-018-2009-5
- Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y (2009) A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dental materials journal 28:44-56. https://doi.org/10.4012/dmj.28.44
- Tamrakar A, Rathee M, Mallick R, Dabas S (2014) CAD/CAM in prosthodontics - a futuristic overview.
- Lee K-H, Yeo I-S, Wu BM, Yang J-H, Han J-S, Kim S-H, Yi Y-J, Kwon T-K (2015) Effects of computer-aided manufacturing technology on precision of clinical metal-free restorations. Biomed Res Int 2015:619027-619027. https://doi.org/10.1155/2015/619027
- Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485-502. https://doi.org/10.1089/ten.TEB.2012.0437
- https://www.autodesk.co.uk/solutions/cad-cam.
- Gul M, Arif A, Ghafoor R (2019) Role of three-dimensional printing in periodontal regeneration and repair: literature review. J Indian Soc Periodontol 23(6):504-510. https://doi.org/10.4103/jisp.jisp_46_19
- Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915-946. https://doi.org/10.1039/c7bm00765e
- Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008
- Jain A, Bansal R (2015) Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci 7(3):188-194. https://doi.org/10.4103/0975-7406.160013
- Mariani E, Lisignoli G, Borzi RM, Pulsatelli L (2019) Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci 20(3):636. https://doi.org/10.3390/ijms20030636
- Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials 3(3):278-314. https://doi.org/10.1016/j.bioactmat.2017.10.001
- Maisani M, Pezzoli D, Chassande O, Mantovani D (2017) Cellularizing hydrogel-based scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment? Journal of Tissue Engineering 8:2041731417712073. https://doi.org/10.1177/2041731417712073
- Padovani GCFVP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621-636
- Polymeric scaffolds in tissue engineering application: a review (2011). International Journal of Polymer Science 2011. doi:https://doi.org/10.1155/2011/290602
- Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Additive Manufacturing 20:44-67. https://doi.org/10.1016/j.addma.2017.12.002
- Tiwari S, Patil R, Bahadur P (2018) Polysaccharide based scaffolds for soft tissue engineering applications. Polymers (Basel) 11(1):1. https://doi.org/10.3390/polym11010001
- Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568. https://doi.org/10.3390/ma12040568
- Guduric V, Bareille R, Heroguez V, Latour S, L'Heureux N, Fricain JC, Catros S, Le Nihouannen D (2017) Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A:106. https://doi.org/10.1002/jbm.a.36289
- Ginjupalli K, Shavi G, Averineni R, Bhat M, Udupa N, Upadhya N (2017) Poly(α-hydroxy acid) based polymers: a review on material and degradation aspects. Polymer Degradation and Stability 144. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
- Saad B, Suter UW (2001) Biodegradable polymeric materials. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, pp 551-555. https://doi.org/10.1016/B0-08-043152-6/00105-4
- Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics - a review. J Istanb Univ Fac Dent 51 (3 Suppl 1):S128-S137. doi:https://doi.org/10.17096/jiufd.63659
- van Vugt TA, Geurts JAP, Arts JJ, Lindfors NC (2017) 3 - biomaterials in treatment of orthopedic infections. In: Geurts J (ed) Arts JJC. Woodhead Publishing, Management of Periprosthetic Joint Infections (PJIs), pp 41-68. https://doi.org/10.1016/B978-0-08-100205-6.00003-3
- Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF (2018) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials (Basel) 11(12):2530. https://doi.org/10.3390/ma11122530
- Ishikawa K, Matsuya S, Miyamoto Y, Kawate K (2003) 9.05 - bioceramics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive Structural Integrity. Pergamon, Oxford, pp 169-214. https://doi.org/10.1016/B0-08-043749-4/09146-1
- Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8. https://doi.org/10.1088/1758-5090/8/3/032002
- Rajzer I (2014) Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. Journal of Materials Science 49(16):5799-5807. https://doi.org/10.1007/s10853-014-8311-3
- Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52
- Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30(3): 204-213. https://doi.org/10.1210/er.2008-0031
- Shen C, Yang C, Xu S, Zhao H (2019) Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 9:17-17. https://doi.org/10.1186/s13578-019-0281-3
- Dang M, Saunders L, Niu X, Fan Y, Ma PX (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Research 6(1):25. https://doi.org/10.1038/s41413-018-0025-8
- Keriquel V, Oliveira H, Remy M, Ziane S, Delmond S, Rousseau B et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific reports 7(1):1778-1778. https://doi.org/10.1038/s41598-017-01914-x
- Visscher DO, Farre-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, Wolff J (2016) Advances in bioprinting technologies for craniofacial reconstruction. Trends in Biotechnology 34(9):700-710. https://doi.org/10.1016/j.tibtech.2016.04.001
- Cui X, Boland T, D'Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2): 149-155. https://doi.org/10.2174/187221112800672949
- Iwanaga S, Arai K, Nakamura M (2015) Chapter 4 - inkjet bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D Biofabrication and Translation. Academic Press, Boston, pp 61-79. https://doi.org/10.1016/B978-0-12-800972-7.00004-9
- Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3): 032002. https://doi.org/10.1088/1758-5090/8/3/032002
- Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive materials 3(2):144-156. https://doi.org/10.1016/j.bioactmat.2017.11.008
- Hansen CJ, Saksena R, Kolesky DB, Vericella JJ, Kranz SJ, Muldowney GP, Christensen KT, Lewis JA (2013) High-throughput printing via microvascular multinozzle arrays. Advanced Materials 25(1):96-102. https://doi.org/10.1002/adma.201203321
- Xu T, Baicu C, Aho M, Zile M, Boland T (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3):035001-035001. https://doi.org/10.1088/1758-5082/1/3/035001
- Tse C, Whiteley R, Yu T, Stringer J, MacNeil S, Haycock JW, Smith PJ (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017. https://doi.org/10.1088/1758-5090/8/1/015017
- Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y (2019) Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 7:e7271. https://doi.org/10.7717/peerj.7271
- Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal 9(10):1304-1311. https://doi.org/10.1002/biot.201400305
- Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026-4034. https://doi.org/10.1016/j.biomaterials.2014.01.064
- Saijo H, Igawa K, Kanno Y, Mori Y, Kondo K, Shimizu K et al (2009) Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. Journal of Artificial Organs 12(3):200-205. https://doi.org/10.1007/s10047-009-0462-7
- Shen C, Zhang Y, Li Q, Zhu M, Hou Y, Qu M, Xu Y, Chai G (2014) Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):300-303
- Pati F, Jang J, Lee J-W, Cho d-w (2015) Extrusion bioprinting. In. pp 123-152. doi:https://doi.org/10.1016/B978-0-12-800972-7.00007-4
- Wust S, Muller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2(3): 119-154. https://doi.org/10.3390/jfb2030119
- Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules (Basel, Switzerland) 21 (6):685. https://doi.org/10.3390/molecules21060685
- Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103. https://doi.org/10.1088/1758-5082/6/2/024103
- Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH (2015) Novel 3D polycaprolactone scaffold for ridge preservation - a pilot randomised controlled clinical trial. Clinical Oral Implants Research 26(3):271-277. https://doi.org/10.1111/clr.12486
- Rider P, Kacarevic ZP, Alkildani S, Retnasingh S, Barbeck M (2018) Bioprinting of tissue engineering scaffolds. Journal of tissue engineering 9: 2041731418802090-2041731418802090. https://doi.org/10.1177/2041731418802090
- Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507-515. https://doi.org/10.2217/nnm.10.14
- Catros S, Guillotin B, Bacakova M, Fricain jc, Guillemot F (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Applied Surface Science - APPL SURF SCI 257:5142-5147. doi:https://doi.org/10.1016/j.apsusc.2010.11.049
- Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N et al (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79-87. https://doi.org/10.1089/ten.TEC.2010.0359
- Unger C, Gruene M, Koch L, Koch J, Chichkov BN (2011) Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Applied Physics A 103(2):271-277. https://doi.org/10.1007/s00339-010-6030-4
- Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250-7256. https://doi.org/10.1016/j.biomaterials.2010.05.055
- Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 8(3):e57741-e57741. https://doi.org/10.1371/journal.pone.0057741
- Roskies MG, Fang D, Abdallah M-N, Charbonneau AM, Cohen N, Jordan JO et al (2017) Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. The Laryngoscope 127(11):E392-E398. https://doi.org/10.1002/lary.26781
- Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355-369. https://doi.org/10.1007/s10616-015-9895-4
- Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
- Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M et al (2018) Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 27(8):1269-1280. https://doi.org/10.1177/0963689718782452
- Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in threedimensional scaffolds. Scientific Reports 6(1):22898. https://doi.org/10.1038/srep22898
- Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S (2020) Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 24:2-2. https://doi.org/10.1186/s40824-019-0180-z
- Buj-Corral I, Bagheri A, Petit-Rojo O (2018) 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel) 11(9):1532. https://doi.org/10.3390/ma11091532
- Graziano A, d'Aquino R, Angelis MGC-D, De Francesco F, Giordano A, Laino G et al (2008) Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. Journal of Cellular Physiology 214(1):166-172. https://doi.org/10.1002/jcp.21175
- Ji S, Guvendiren M (2019) 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines (Basel) 11(1):31. https://doi.org/10.3390/mi11010031
- Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carboncoated microstructured surfaces. Biomaterials 51:69-79. https://doi.org/10.1016/j.biomaterials.2015.01.035
- Chen X, Fan H, Deng X, Wu L, Yi T, Gu L et al (2018) Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials (Basel) 8(11):960. https://doi.org/10.3390/nano8110960
- Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Materials Today 16(12):496-504. https://doi.org/10.1016/j.mattod.2013.11.017
- Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17(6):459-474. https://doi.org/10.1089/ten.TEB.2011.0251
- https://clinicaltrials.gov/ct2/show/NCT03103295.
- Olson JL, Atala A, Yoo JJ (2011) Tissue engineering: current strategies and future directions. Chonnam Med J 47(1):1-13. https://doi.org/10.4068/cmj.2011.47.1.1
- Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y (2019) Applications of 3D printing on craniofacial bone repair: a systematic review. Journal of Dentistry 80:1-14. https://doi.org/10.1016/j.jdent.2018.11.004
- Ventola CL (2014) Medical applications for 3D printing: current and projected uses. P T 39(10):704-711
- Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF (2019) Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Frontiers in Bioengineering and Biotechnology 7(184). https://doi.org/10.3389/fbioe.2019.00184
Cited by
- The use of additively manufactured scaffolds for treating gingival recession associated with interproximal defects vol.4, pp.3, 2020, https://doi.org/10.2217/3dp-2020-0008
- 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186942
- Advances on Bone Substitutes through 3D Bioprinting vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197012
- Implications of Applying New Technology in Cosmetic and Reconstructive Facial Plastic Surgery vol.36, pp.6, 2020, https://doi.org/10.1055/s-0040-1721116
- Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior vol.4, pp.2, 2020, https://doi.org/10.1021/acsabm.0c01213
- Tissue Engineering Through 3D Bioprinting to Recreate and Study Bone Disease vol.9, pp.5, 2021, https://doi.org/10.3390/biomedicines9050551
- Advances in 3D Printing for Tissue Engineering vol.14, pp.12, 2020, https://doi.org/10.3390/ma14123149
- Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine vol.17, pp.6, 2021, https://doi.org/10.1166/jbn.2021.3078
- Progress in cardiovascular bioprinting vol.45, pp.7, 2020, https://doi.org/10.1111/aor.13913
- Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs vol.14, pp.14, 2020, https://doi.org/10.3390/ma14143892
- Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends vol.26, pp.4, 2020, https://doi.org/10.1177/24726303211020297
- CADCAM in dentistry. Materials and methods: an overview for the dental team vol.48, pp.8, 2021, https://doi.org/10.12968/denu.2021.48.8.671
- Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration vol.1, pp.11, 2021, https://doi.org/10.1002/anbr.202100035
- Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2 vol.22, pp.22, 2020, https://doi.org/10.3390/ijms222212518
- Application of Artificial Intelligence in Medicine: An Overview vol.41, pp.6, 2020, https://doi.org/10.1007/s11596-021-2474-3
- Recent approaches towards bone tissue engineering vol.154, 2020, https://doi.org/10.1016/j.bone.2021.116256