DOI QR코드

DOI QR Code

Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

  • Salah, Muhja (St George's Hospital) ;
  • Tayebi, Lobat (Marquette University School of Dentistry) ;
  • Moharamzadeh, Keyvan (Academic Unit of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield) ;
  • Naini, Farhad B. (Kingston and St George's Hospitals and St George's Medical School)
  • Received : 2020.05.05
  • Accepted : 2020.05.24
  • Published : 2020.12.31

Abstract

Background: Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon's skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review: This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laserassisted bioprinting. Conclusions: Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome.

Keywords

Acknowledgement

LT and KM acknowledge the financial support from the National Institute of Dental & Craniofacial Research of the National Institutes of Health under award number R15DE027533.

References

  1. Singh VP, Moss TP (2015) Psychological impact of visible differences in patients with congenital craniofacial anomalies. Prog Orthod 16:5-5. https://doi.org/10.1186/s40510-015-0078-9
  2. Elsalanty ME, Genecov DG (2009) Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2(3):125-134. https://doi.org/10.1055/s0029-1215875
  3. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445-2461. https://doi.org/10.1007/s10856-014-5240-2
  4. Oppenheimer AJ, Tong L, Buchman SR (2008) Craniofacial bone grafting: Wolff's law revisited. Craniomaxillofac Trauma Reconstr 1(1):49-61. https://doi.org/10.1055/s-0028-1098963
  5. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2(Suppl 2):S96-S101. https://doi.org/10.1007/s005860100282
  6. Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials (Basel) 12(17):2660. https://doi.org/10.3390/ma12172660
  7. Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives. Materials 12:2660. https://doi.org/10.3390/ma12172660
  8. Mittal Y, Jindal G, Garg S (2016) Bone manipulation procedures in dental implants. Indian J Dent 7(2):86-94. https://doi.org/10.4103/0975-962X.184650
  9. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363-408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10
  10. Kargozar S, Hashemian S, Soleimani M, Milan P, Askari M, Khalaj V, Samadikuchaksaraei A, Hamzehlou S, Katebi A, Latifi N, Mozafari M, Baino F (2017) Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering: C 1:688-698. https://doi.org/10.1016/j.msec.2017.02.097
  11. Awad HA, O'Keefe RJ, Lee CH, Mao JJ (2014) Chapter 83 - bone tissue engineering: clinical challenges and emergent advances in orthopedic and craniofacial surgery. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering (Fourth Edition). Academic Press, Boston, pp 1733-1743. doi: https://doi.org/10.1016/B978-0-12-398358-9.00083-5
  12. O'Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Materials Today 14(3):88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
  13. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6(2):90-99
  14. Chocholata P, Kulda V, Babuska V (2019) Fabrication of Scaffolds for bone-tissue regeneration. Materials 12(4). https://doi.org/10.3390/ma12040568
  15. Nyberg E, Rindone A, Dorafshar A, Grayson W (2016) Comparison of 3D-printed poly- -caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue engineering Part A 23. https://doi.org/10.1089/ten.TEA.2016.0418
  16. Scheitz CJF, Peck LJ, Groban ES (2018) Biotechnology software in the digital age: are you winning? Journal of Industrial Microbiology & Biotechnology 45(7):529-534. https://doi.org/10.1007/s10295-018-2009-5
  17. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y (2009) A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dental materials journal 28:44-56. https://doi.org/10.4012/dmj.28.44
  18. Tamrakar A, Rathee M, Mallick R, Dabas S (2014) CAD/CAM in prosthodontics - a futuristic overview.
  19. Lee K-H, Yeo I-S, Wu BM, Yang J-H, Han J-S, Kim S-H, Yi Y-J, Kwon T-K (2015) Effects of computer-aided manufacturing technology on precision of clinical metal-free restorations. Biomed Res Int 2015:619027-619027. https://doi.org/10.1155/2015/619027
  20. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485-502. https://doi.org/10.1089/ten.TEB.2012.0437
  21. https://www.autodesk.co.uk/solutions/cad-cam.
  22. Gul M, Arif A, Ghafoor R (2019) Role of three-dimensional printing in periodontal regeneration and repair: literature review. J Indian Soc Periodontol 23(6):504-510. https://doi.org/10.4103/jisp.jisp_46_19
  23. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915-946. https://doi.org/10.1039/c7bm00765e
  24. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008
  25. Jain A, Bansal R (2015) Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci 7(3):188-194. https://doi.org/10.4103/0975-7406.160013
  26. Mariani E, Lisignoli G, Borzi RM, Pulsatelli L (2019) Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci 20(3):636. https://doi.org/10.3390/ijms20030636
  27. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials 3(3):278-314. https://doi.org/10.1016/j.bioactmat.2017.10.001
  28. Maisani M, Pezzoli D, Chassande O, Mantovani D (2017) Cellularizing hydrogel-based scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment? Journal of Tissue Engineering 8:2041731417712073. https://doi.org/10.1177/2041731417712073
  29. Padovani GCFVP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621-636
  30. Polymeric scaffolds in tissue engineering application: a review (2011). International Journal of Polymer Science 2011. doi:https://doi.org/10.1155/2011/290602
  31. Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Additive Manufacturing 20:44-67. https://doi.org/10.1016/j.addma.2017.12.002
  32. Tiwari S, Patil R, Bahadur P (2018) Polysaccharide based scaffolds for soft tissue engineering applications. Polymers (Basel) 11(1):1. https://doi.org/10.3390/polym11010001
  33. Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568. https://doi.org/10.3390/ma12040568
  34. Guduric V, Bareille R, Heroguez V, Latour S, L'Heureux N, Fricain JC, Catros S, Le Nihouannen D (2017) Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A:106. https://doi.org/10.1002/jbm.a.36289
  35. Ginjupalli K, Shavi G, Averineni R, Bhat M, Udupa N, Upadhya N (2017) Poly(α-hydroxy acid) based polymers: a review on material and degradation aspects. Polymer Degradation and Stability 144. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
  36. Saad B, Suter UW (2001) Biodegradable polymeric materials. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, pp 551-555. https://doi.org/10.1016/B0-08-043152-6/00105-4
  37. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics - a review. J Istanb Univ Fac Dent 51 (3 Suppl 1):S128-S137. doi:https://doi.org/10.17096/jiufd.63659
  38. van Vugt TA, Geurts JAP, Arts JJ, Lindfors NC (2017) 3 - biomaterials in treatment of orthopedic infections. In: Geurts J (ed) Arts JJC. Woodhead Publishing, Management of Periprosthetic Joint Infections (PJIs), pp 41-68. https://doi.org/10.1016/B978-0-08-100205-6.00003-3
  39. Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF (2018) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials (Basel) 11(12):2530. https://doi.org/10.3390/ma11122530
  40. Ishikawa K, Matsuya S, Miyamoto Y, Kawate K (2003) 9.05 - bioceramics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive Structural Integrity. Pergamon, Oxford, pp 169-214. https://doi.org/10.1016/B0-08-043749-4/09146-1
  41. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8. https://doi.org/10.1088/1758-5090/8/3/032002
  42. Rajzer I (2014) Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. Journal of Materials Science 49(16):5799-5807. https://doi.org/10.1007/s10853-014-8311-3
  43. Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52
  44. Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30(3): 204-213. https://doi.org/10.1210/er.2008-0031
  45. Shen C, Yang C, Xu S, Zhao H (2019) Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 9:17-17. https://doi.org/10.1186/s13578-019-0281-3
  46. Dang M, Saunders L, Niu X, Fan Y, Ma PX (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Research 6(1):25. https://doi.org/10.1038/s41413-018-0025-8
  47. Keriquel V, Oliveira H, Remy M, Ziane S, Delmond S, Rousseau B et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific reports 7(1):1778-1778. https://doi.org/10.1038/s41598-017-01914-x
  48. Visscher DO, Farre-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, Wolff J (2016) Advances in bioprinting technologies for craniofacial reconstruction. Trends in Biotechnology 34(9):700-710. https://doi.org/10.1016/j.tibtech.2016.04.001
  49. Cui X, Boland T, D'Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2): 149-155. https://doi.org/10.2174/187221112800672949
  50. Iwanaga S, Arai K, Nakamura M (2015) Chapter 4 - inkjet bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D Biofabrication and Translation. Academic Press, Boston, pp 61-79. https://doi.org/10.1016/B978-0-12-800972-7.00004-9
  51. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3): 032002. https://doi.org/10.1088/1758-5090/8/3/032002
  52. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive materials 3(2):144-156. https://doi.org/10.1016/j.bioactmat.2017.11.008
  53. Hansen CJ, Saksena R, Kolesky DB, Vericella JJ, Kranz SJ, Muldowney GP, Christensen KT, Lewis JA (2013) High-throughput printing via microvascular multinozzle arrays. Advanced Materials 25(1):96-102. https://doi.org/10.1002/adma.201203321
  54. Xu T, Baicu C, Aho M, Zile M, Boland T (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1(3):035001-035001. https://doi.org/10.1088/1758-5082/1/3/035001
  55. Tse C, Whiteley R, Yu T, Stringer J, MacNeil S, Haycock JW, Smith PJ (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017. https://doi.org/10.1088/1758-5090/8/1/015017
  56. Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y (2019) Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 7:e7271. https://doi.org/10.7717/peerj.7271
  57. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal 9(10):1304-1311. https://doi.org/10.1002/biot.201400305
  58. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026-4034. https://doi.org/10.1016/j.biomaterials.2014.01.064
  59. Saijo H, Igawa K, Kanno Y, Mori Y, Kondo K, Shimizu K et al (2009) Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. Journal of Artificial Organs 12(3):200-205. https://doi.org/10.1007/s10047-009-0462-7
  60. Shen C, Zhang Y, Li Q, Zhu M, Hou Y, Qu M, Xu Y, Chai G (2014) Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):300-303
  61. Pati F, Jang J, Lee J-W, Cho d-w (2015) Extrusion bioprinting. In. pp 123-152. doi:https://doi.org/10.1016/B978-0-12-800972-7.00007-4
  62. Wust S, Muller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2(3): 119-154. https://doi.org/10.3390/jfb2030119
  63. Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules (Basel, Switzerland) 21 (6):685. https://doi.org/10.3390/molecules21060685
  64. Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103. https://doi.org/10.1088/1758-5082/6/2/024103
  65. Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH (2015) Novel 3D polycaprolactone scaffold for ridge preservation - a pilot randomised controlled clinical trial. Clinical Oral Implants Research 26(3):271-277. https://doi.org/10.1111/clr.12486
  66. Rider P, Kacarevic ZP, Alkildani S, Retnasingh S, Barbeck M (2018) Bioprinting of tissue engineering scaffolds. Journal of tissue engineering 9: 2041731418802090-2041731418802090. https://doi.org/10.1177/2041731418802090
  67. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507-515. https://doi.org/10.2217/nnm.10.14
  68. Catros S, Guillotin B, Bacakova M, Fricain jc, Guillemot F (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Applied Surface Science - APPL SURF SCI 257:5142-5147. doi:https://doi.org/10.1016/j.apsusc.2010.11.049
  69. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N et al (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79-87. https://doi.org/10.1089/ten.TEC.2010.0359
  70. Unger C, Gruene M, Koch L, Koch J, Chichkov BN (2011) Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Applied Physics A 103(2):271-277. https://doi.org/10.1007/s00339-010-6030-4
  71. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250-7256. https://doi.org/10.1016/j.biomaterials.2010.05.055
  72. Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 8(3):e57741-e57741. https://doi.org/10.1371/journal.pone.0057741
  73. Roskies MG, Fang D, Abdallah M-N, Charbonneau AM, Cohen N, Jordan JO et al (2017) Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. The Laryngoscope 127(11):E392-E398. https://doi.org/10.1002/lary.26781
  74. Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355-369. https://doi.org/10.1007/s10616-015-9895-4
  75. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
  76. Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M et al (2018) Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 27(8):1269-1280. https://doi.org/10.1177/0963689718782452
  77. Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in threedimensional scaffolds. Scientific Reports 6(1):22898. https://doi.org/10.1038/srep22898
  78. Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S (2020) Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 24:2-2. https://doi.org/10.1186/s40824-019-0180-z
  79. Buj-Corral I, Bagheri A, Petit-Rojo O (2018) 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel) 11(9):1532. https://doi.org/10.3390/ma11091532
  80. Graziano A, d'Aquino R, Angelis MGC-D, De Francesco F, Giordano A, Laino G et al (2008) Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. Journal of Cellular Physiology 214(1):166-172. https://doi.org/10.1002/jcp.21175
  81. Ji S, Guvendiren M (2019) 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines (Basel) 11(1):31. https://doi.org/10.3390/mi11010031
  82. Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carboncoated microstructured surfaces. Biomaterials 51:69-79. https://doi.org/10.1016/j.biomaterials.2015.01.035
  83. Chen X, Fan H, Deng X, Wu L, Yi T, Gu L et al (2018) Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials (Basel) 8(11):960. https://doi.org/10.3390/nano8110960
  84. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Materials Today 16(12):496-504. https://doi.org/10.1016/j.mattod.2013.11.017
  85. Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17(6):459-474. https://doi.org/10.1089/ten.TEB.2011.0251
  86. https://clinicaltrials.gov/ct2/show/NCT03103295.
  87. Olson JL, Atala A, Yoo JJ (2011) Tissue engineering: current strategies and future directions. Chonnam Med J 47(1):1-13. https://doi.org/10.4068/cmj.2011.47.1.1
  88. Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y (2019) Applications of 3D printing on craniofacial bone repair: a systematic review. Journal of Dentistry 80:1-14. https://doi.org/10.1016/j.jdent.2018.11.004
  89. Ventola CL (2014) Medical applications for 3D printing: current and projected uses. P T 39(10):704-711
  90. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF (2019) Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Frontiers in Bioengineering and Biotechnology 7(184). https://doi.org/10.3389/fbioe.2019.00184

Cited by

  1. The use of additively manufactured scaffolds for treating gingival recession associated with interproximal defects vol.4, pp.3, 2020, https://doi.org/10.2217/3dp-2020-0008
  2. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186942
  3. Advances on Bone Substitutes through 3D Bioprinting vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197012
  4. Implications of Applying New Technology in Cosmetic and Reconstructive Facial Plastic Surgery vol.36, pp.6, 2020, https://doi.org/10.1055/s-0040-1721116
  5. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior vol.4, pp.2, 2020, https://doi.org/10.1021/acsabm.0c01213
  6. Tissue Engineering Through 3D Bioprinting to Recreate and Study Bone Disease vol.9, pp.5, 2021, https://doi.org/10.3390/biomedicines9050551
  7. Advances in 3D Printing for Tissue Engineering vol.14, pp.12, 2020, https://doi.org/10.3390/ma14123149
  8. Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine vol.17, pp.6, 2021, https://doi.org/10.1166/jbn.2021.3078
  9. Progress in cardiovascular bioprinting vol.45, pp.7, 2020, https://doi.org/10.1111/aor.13913
  10. Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs vol.14, pp.14, 2020, https://doi.org/10.3390/ma14143892
  11. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends vol.26, pp.4, 2020, https://doi.org/10.1177/24726303211020297
  12. CADCAM in dentistry. Materials and methods: an overview for the dental team vol.48, pp.8, 2021, https://doi.org/10.12968/denu.2021.48.8.671
  13. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration vol.1, pp.11, 2021, https://doi.org/10.1002/anbr.202100035
  14. Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2 vol.22, pp.22, 2020, https://doi.org/10.3390/ijms222212518
  15. Application of Artificial Intelligence in Medicine: An Overview vol.41, pp.6, 2020, https://doi.org/10.1007/s11596-021-2474-3
  16. Recent approaches towards bone tissue engineering vol.154, 2020, https://doi.org/10.1016/j.bone.2021.116256