Acknowledgement
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (NRF-2020R1A2C2003843) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI18C0022).
References
- Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging 2008;1:782-786 https://doi.org/10.1016/j.jcmg.2008.04.015
- Juergens KU, Seifarth H, Range F, Wienbeck S, Wenker M, Heindel W, et al. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. AJR Am J Roentgenol 2008;190:308-314 https://doi.org/10.2214/AJR.07.2283
- Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al. Anatomically Constrained Neural Networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 2018;37:384-395 https://doi.org/10.1109/TMI.2017.2743464
- Leclerc S, Smistad E, Pedrosa J, Ostvik A, Cervenansky F, Espinosa F, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging 2019;38:2198-2210 https://doi.org/10.1109/TMI.2019.2900516
- Mahnken AH, Muhlenbruch G, Koos R, Stanzel S, Busch PS, Niethammer M, et al. Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 2006;16:1416-1423 https://doi.org/10.1007/s00330-006-0226-1
- Emad O, Yassine IA, Fahmy AS. Automatic localization of the left ventricle in cardiac MRI images using deep learning. Conf Proc IEEE Eng Med Biol Soc 2015;2015:683-686
- Plumhans C, Keil S, Ocklenburg C, Muhlenbruch G, Behrendt FF, Gunther RW, et al. Comparison of manual, semi- and fully automated heart segmentation for assessing global left ventricular function in multidetector computed tomography. Invest Radiol 2009;44:476-482 https://doi.org/10.1097/RLI.0b013e3181aaf4e1
- Lorenz C, von Berg J. A comprehensive shape model of the heart. Med Image Anal 2006;10:657-670 https://doi.org/10.1016/j.media.2006.03.004
- Lehnert T, Wrzesniak A, Bernhardt D, Ackermann H, Kerl JM, Vega-Higuera F, et al. Fully automated right ventricular volumetry from ECG-gated coronary CT angiography data: evaluation of prototype software. Int J Cardiovasc Imaging 2013;29:489-496 https://doi.org/10.1007/s10554-012-0109-2
- Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, et al. Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 2011;15:863-876 https://doi.org/10.1016/j.media.2011.06.004
- Coche E, Walker MJ, Zech F, de Crombrugghe R, Vlassenbroek A. Quantitative right and left ventricular functional analysis during gated whole-chest MDCT: a feasibility study comparing automatic segmentation to semi-manual contouring. Eur J Radiol 2010;74:e138-e143 https://doi.org/10.1016/j.ejrad.2009.05.037
- Bauer RW, Kraus B, Bernhardt D, Kerl JM, Lehnert T, Ackermann H, et al. Computer-based automated left atrium segmentation and volumetry from ECG-gated coronary CT angiography data: comparison with manual slice segmentation and ultrasound planimetric methods. Rofo 2010;182:1110-1117 https://doi.org/10.1055/s-0029-1245729
- Abadi S, Roguin A, Engel A, Lessick J. Feasibility of automatic assessment of four-chamber cardiac function with MDCT: initial clinical application and validation. Eur J Radiol 2010;74:175-181 https://doi.org/10.1016/j.ejrad.2009.01.035
- Yang DH, Kang SJ, Koo HJ, Kweon J, Kang JW, Lim TH, et al. Incremental value of subtended myocardial mass for identifying FFR-verified ischemia using quantitative CT angiography: comparison with quantitative coronary angiography and CT-FFR. JACC Cardiovasc Imaging 2019;12:707-717 https://doi.org/10.1016/j.jcmg.2017.10.027
- Kang SJ, Kim YH, Lee JG, Kang DY, Lee PH, Ahn JM, et al. Impact of subtended myocardial mass assessed by coronary computed tomographic angiography-based myocardial segmentation. Am J Cardiol 2019;123:757-763 https://doi.org/10.1016/j.amjcard.2018.11.042
- Weustink AC, Mollet NR, Pugliese F, Meijboom WB, Nieman K, Heijenbrok-Kal MH, et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 2008;248:792-798 https://doi.org/10.1148/radiol.2483072098
- Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017;39:640-651 https://doi.org/10.1109/TPAMI.2016.2572683
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [updated Apr 2015]. Cornell University, 2014. Available at: https://arxiv.org/abs/1409.1556
- Hamer AW, Takayama M, Abraham KA, Roche AH, Kerr AR, Williams BF, et al. End-systolic volume and long-term survival after coronary artery bypass graft surgery in patients with impaired left ventricular function. Circulation 1994;90:2899-2904 https://doi.org/10.1161/01.CIR.90.6.2899
- White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44-51 https://doi.org/10.1161/01.CIR.76.1.44
- Fischbach R, Juergens KU, Ozgun M, Maintz D, Grude M, Seifarth H, et al. Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol 2007;17:1009-1017 https://doi.org/10.1007/s00330-006-0438-4
- Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006;114:654-661 https://doi.org/10.1161/CIRCULATIONAHA.106.626143
- Heuschmid M, Rothfuss JK, Schroeder S, Fenchel M, Stauder N, Burgstahler C, et al. Assessment of left ventricular myocardial function using 16-slice multidetector-row computed tomography: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 2006;16:551-559 https://doi.org/10.1007/s00330-005-0015-2
- Lessick J, Mutlak D, Rispler S, Ghersin E, Dragu R, Litmanovich D, et al. Comparison of multidetector computed tomography versus echocardiography for assessing regional left ventricular function. Am J Cardiol 2005;96:1011-1015 https://doi.org/10.1016/j.amjcard.2005.05.062
- Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG, et al. Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 2003;38:653-661 https://doi.org/10.1097/01.rli.0000077070.40713.76
- Dirksen MS, Bax JJ, de Roos A, Jukema JW, van der Geest RJ, Geleijns K, et al. Usefulness of dynamic multislice computed tomography of left ventricular function in unstable angina pectoris and comparison with echocardiography. Am J Cardiol 2002;90:1157-1160 https://doi.org/10.1016/S0002-9149(02)02789-3
- Belge B, Coche E, Pasquet A, Vanoverschelde JL, Gerber BL. Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: comparison with cine magnetic resonance imaging. Eur Radiol 2006;16:1424-1433 https://doi.org/10.1007/s00330-006-0169-6
- Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 2005;234:381-390 https://doi.org/10.1148/radiol.2342031271
- Schlosser T, Pagonidis K, Herborn CU, Hunold P, Waltering KU, Lauenstein TC, et al. Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. AJR Am J Roentgenol 2005;184:765-773 https://doi.org/10.2214/ajr.184.3.01840765
- Krishnam MS, Tomasian A, Iv M, Ruehm SG, Saleh R, Panknin C, et al. Left ventricular ejection fraction using 64-slice CT coronary angiography and new evaluation software: initial experience. Br J Radiol 2008;81:450-455 https://doi.org/10.1259/bjr/54748900