DOI QR코드

DOI QR Code

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant

원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교

  • Received : 2020.04.28
  • Accepted : 2020.06.19
  • Published : 2020.06.30

Abstract

Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

해체 원전에서 총 폐기물의 약 70~80%에 해당하는 많은 양의 콘크리트 폐기물은 해체 폐기물의 대부분을 차지한다. 해체 시 발생된 콘크리트 폐기물은 핵종별 농도에 따라 규제해제 폐기물과 방사성폐기물로 정의할 수 있다. 따라서, 방사성 콘크리트 폐기물의 처분 비용을 저감하기 위하여 자체 처분 및 제한적 재활용을 위한 제염 작업의 수행이 중요하다. 그러므로 콘크리트 폐기물의 효율적인 제염 작업을 위해 내부 방사능 분포를 예측하는 것이 필수적이다. 본 연구는 원전 해체 시, 발생되는 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위하여 다양한 컴프턴 영상 재구성 방법의 성능을 비교하였다. 다양한 컴프턴 영상 재구성 방법으로 단순 역투사(SBP), 필터 후 역투사(FBP), 최대우도 기댓값 최대화 방법(MLEM), 그리고 기존의 MLEM의 시스템 반응 함수에 에너지 정보가 결합되어 확률적으로 계산하는 최대우도 기댓값 최대화 방법(E-MLEM)이 사용되었다. 재구성된 영상을 획득한 후, 정량적인 분석 방법을 이용하여 재구성된 영상의 성능을 정량적으로 비교 및 평가하였다. MLEM 및 E-MLEM 영상 재구성 방법은 각각 재구성된 영상에서 높은 이미지 분해능과 신호 대 잡음비를 유지하는 데 있어 가장 좋은 성능을 보여주었다. 본 연구에서 도출된 결과들은 원자력 시설 해체 시 방사성 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위한 수단으로 컴프턴 영상을 사용할 수 있는 가능성을 보여주었다.

Keywords

References

  1. International Atomic Energy Agency, Managing Low Radioactivity Material from the Decommissioning of Nuclear Facilities, IAEA Technical Reports Series No. 462 (2008).
  2. J.H. Cheon, S.C. Lee, C.L. Kim, and H.G. Park, "Feasibility Study on recycling of Concrete Waste from NPP Decommissioning Through Literature Review", J. Rec. Const. Resources., 6(2), 115-122 (2018).
  3. R. Reid, "Lessons Learned from EPRI Decommissioning Program-Decommissioning and Demolition", Proc. of Workshop on Nuclear Power Plant Decommissioning (2015).
  4. K.Y. Lee, M.K. Oh, J.M. Kim, E.H. Lee, I.S. Kim, K.W. Kim, D.Y. Chung, and B.K. Seo, "Trends in Technology Development for the Treatment of Radioactive Concrete Waste", J. Nucl. Fuel Cycle Waste Technol., 9(1), 93-105 (2018).
  5. C.S. Cheon and C.L. Kim, "The Dismantling and Disposal Strategy of a Biological Shield for Minimization of Radioactive Concrete Waste During Decommissioning of a Nuclear Power Plant", J. Nucl. Fuel Cycle Waste Technol., 15(4), 355-367 (2017). https://doi.org/10.7733/jnfcwt.2017.15.4.355
  6. C.H. Jumg, W.K. Choi, B.Y. Min, W.Z. Oh, and K.W. Lee, A State of the Art on the Technology for Reduction and Reuse of the Decommissioning Concrete Wastes, Korea Atomic Energy Research Institute Report, 1-5, KAERI/AR-800 (2008).
  7. E.E. Fenimore and T.M. Cannon, "Coded aperture imaging with uniformly redundant arrays", Appl. Opt., 17(3), 337-347 (1978). https://doi.org/10.1364/AO.17.000337
  8. M. Singh and D. Doria, "An electronically collimated gamma camera for single photon emission computed tomography Part I: Theoretical consideration and design criteria", Med. Phys., 10, 421-427 (1983). https://doi.org/10.1118/1.595313
  9. C.E. Lehner, Z. He, and F. Zhang, "$4\pi$ Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood", IEEE.Trans. Nucle. Sci., 51(4), 1618-1624 (2004). https://doi.org/10.1109/TNS.2004.832573
  10. S.G. Jeong, S.Y. Park, H.K. Kim, H.M. Park, T.K. Lee, S.R. Park, C.H. Kim, J.H. Kim, J.Y. Lee, H.S. Lee, and Y.H. Hong, "Utilization on Industry of NPP Decommissioning of Large-Area Compton Imaging System for Concrete Internal Activation", Proc. of KRWS 2019 Fall conference, November, 2019, Jeju.
  11. Electric Power Research Institute, Use of Portable Gamma Detector Systems During Decommissioning, EPRI Report, TR-3002015953 (2019).
  12. D.B. Pelowitz, "MCNP-A General Monte Carlo N Particle Transport Code, Version 5", Oak Ridge National Laboratory, LA-CP-11-00438 (2011).
  13. L.C. Parra, "Reconstruction of cone-beam projections from Compton scattered data", IEEE Trans. Nucl. Sci., 47(4), 1543-1550 (2000). https://doi.org/10.1109/23.873014
  14. L. Parra and H.H. Barrett, "List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET", IEEE Trans. Nucl. Sci., 17(2), 228-2335 (1998).
  15. D. Xu and Z. He, "Gamma-ray energy-imaging integrated spectral deconvolution", Nucl. Instrum. Meth. A., 574(1), 98-109 (2007). https://doi.org/10.1016/j.nima.2007.01.171
  16. E. Michel-Gonzalez, M.H. Cho, and S.Y. Lee, "Geometric nonlinear diffusion filter and its application to X-ray imaging", BioMed. Eng., 10(47), Online (2011).
  17. P.T. Durrant, M. Dallimore, I.D. Jupp, and D. Ramsden, "The application of pinhole and coded aperture imaging in the nuclear environment", Nucl. Instrum. Meth. A., 422(1-3), 667-671 (1999). https://doi.org/10.1016/S0168-9002(98)01014-6