DOI QR코드

DOI QR Code

Data Processing and Analysis of Non-Intrusive Electrical Appliances Load Monitoring in Smart Farm

스마트팜 개별 전기기기의 비간섭적 부하 식별 데이터 처리 및 분석

  • Received : 2020.05.27
  • Accepted : 2020.06.29
  • Published : 2020.06.30

Abstract

The non-intrusive load monitoring (NILM) is an important way to cost-effective real-time monitoring the energy consumption and time of use for each appliance in a home or business using aggregated energy from a single recording meter. In this paper, we collect from the smart farm's power consumption data acquisition system to the server via an LTE modem, converted the total power consumption, and the power of individual electric devices into HDF5 format and performed NILM analysis. We perform NILM analysis using open source denoising autoencoder (DAE), long short-term memory (LSTM), gated recurrent unit (GRU), and sequence-to-point (seq2point) learning methods.

비간섭적 개별 전기 기기 부하 식별(NILM)은 단일 미터기에서 측정한 총 소비 전력을 사용하여 가정이나 회사에서 개별 전기 기기의 소비 전력과 사용 시간을 효율적으로 모니터링할 수 있는 방법이다. 본 논문에서는 스마트팜의 소비 전력 데이터 취득 시스템에서 LTE 모뎀을 통해 서버로 수집된 총 소비 전력량, 개별 전기 기기의 전력량을 HDF5 형태로 변환하고 NILM 분석을 수행하였다. NILM 분석은 오픈소스를 사용하여 잡음제거 오토인코더(Denoising Autoencoder), 장단기 메모리(Long Short-Term Memory), 게이트 순환 유닛(Gated Recurrent Unit), 시퀀스-투-포인트(sequence-to-point) 학습 방법을 사용하였다.

Keywords

References

  1. G. W. Hart. "Nonintrusive appliance load monitoring," in Proceedings of the IEEE, vol.80, no.12, pp.1870-1891, 1992. DOI: 10.1109/5.192069
  2. N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and M. Srivastava. "NILMTK: An open source toolkit for non-intrusive load monitoring," in Fifth International Conference on Future Energy Systems (ACM e-Energy), Cambridge, UK, 2014. DOI: 10.1145/2602044.2602051
  3. H.-S. Kim, H.-C. Kim, J.-W. Jwa, and M.-J. Kang, "Development of data acquisition system for smart farm non-intrusive load monitoring," j.inst.Korean.electr.electron.eng, vol.23, no.1, pp. 322-325, 2019. http://dx.doi.org/10.7471/ikeee.2019.23.1.322
  4. J. Kelly and W. Knottenbelt, "Neural NILM: Deep neural networks applied to energy disaggregation," in Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, pp.55-64, 2015.
  5. K. Odysseas, C. Nalmpantis, and D. Vrakas, "Sliding window approach for online energy disaggregation using artificial neural networks," in Proceedings of the 10th Hellenic Conference on Artificial Intelligence, ACM, pp.1-6, 2018. DOI: 10.1145/3200947.3201011
  6. C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, "Sequence-to-point learning with neural networks for nonintrusive load monitoring," in Proceedings of the Thirty-Second Conference on Artificial Intelligence, pp.2604-2611, 2018.
  7. https://github.com/nilmtk/nilm_metadata
  8. https://bitbucket.org/jejunu-soombi/jsedd/src/master/metadata/
  9. https://bitbucket.org/jejunu-soombi/jsedd/src/master/data/jsedd.h5
  10. https://github.com/OdysseasKr/neural-disaggregator