DOI QR코드

DOI QR Code

규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링

Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm

  • Oh, Yoon-Gi (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Han, Byeol (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Oh, Yong-Kuk (Korea Railroad Research Institute) ;
  • Ryu, Joon-Hyoung (Korea Railroad Research Institute) ;
  • Lee, Kyo-Beum (Dept. of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2020.06.08
  • 심사 : 2020.06.17
  • 발행 : 2020.06.30

초록

본 논문에서는 규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링을 제시한다. 모터의 운전영역에 따른 토크 곡선을 계산하여 견인 시스템의 구동 전력을 결정하고 철도차량의 각 운전 모드에 적용하여 전기 시스템을 모델링 한다. 전기 시스템의 전력은 규칙기반 알고리즘을 이용한 에너지 관리시스템(Energy Management System, EMS)으로 결정한다. 배터리의 충전상태(State Of Charge, SOC)에 따라 운전 영역을 세분화하여 수소 소비량을 효율적으로 관리한다. 제안하는 철도차량 모델링의 타당성은 MATLAB/Simulink 시뮬레이션을 통해 검증한다.

This paper presents the modeling of hybrid railway vehicles with hydrogen Fuel-Cells (FCs)/battery using a rule-based algorithm. The driving power of traction system is determined with the speed-torque curve by operation area of the electric machine and the electrical systems are modeled. The demanded power of electrical systems is set with the energy management system (EMS). The consumption of hydrogen is effectively managed with the subdivided operation region depending on the state of charge (SOC). The validity of the modeling is verified using MATLAB/Simulink.

키워드

참고문헌

  1. B. Han, J.-S Lee, Y. Bak, and K.-B. Lee, "Performance Analysis of Direct Torque Control method for Traction System based on IPMSM," Journal of the Korean Society for Railway, vol.23, no.1, pp.21-34, 2020. DOI: 10.1007/s13369-020-04550-2
  2. J.-H. Lee and K.-B. Lee, "A Dead-Beat Control for Bridgeless Inverter Systems to Reduce the Distortion of Grid Current," IEEE J. Emerg. Sel. Topics in Power Electron., vol.6, no.1, pp.151-164, 2018. DOI: 10.1109/JESTPE.2017.2734118
  3. S. Cho, H.-S. Kang, K.-B. Lee, and J.-Y. Yoo, "Performance Improvement of a Grid-Connected Inverter under Distorted Grid Voltage Using a Harmonic Extractor," Electronics, vol.8, no.1038, pp.1-21, 2019. DOI: 10.3390/electronics8091038
  4. C. C. Chan, A. Bouscayrol, and K. Chen, "Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling," IEEE Trans. Veh. Technol., vol.59, no.2, pp.589-598, 2010. DOI: 10.1109/TVT.2009.2033605
  5. X. Hu, N. Murgivski, L. M. Johannesson, and B. Egardt, "Optimal Dimensioning and Power Management of a Fuel Cell/Battery Hybrid Bus Via Convex Programming," IEEE Trans. Mechatron., vol.20, no.1, pp.457-468, 2015. DOI: 10.1109/TMECH.2014.2336264
  6. W. Su, H. Eichi, W. Zeng, and M. Y. Chow, "A survey on the electrification of transportation in a smart grid environment," IEEE Trans. Ind. Inf., vol.8, no.1, pp.1-10, 2012. DOI: 10.1109/TII.2011.2172454
  7. J.-S. Lee and J.-H. Ryu, "Hydrogen Fuel-Cell/Battery Hybrid Train," Journal of the Korean Society for Railway, vol.22, no.1, pp.19-26, 2019. DOI: 10.7782/JKSR.2019.22.1.19
  8. A. S. Abdelrahman, Y. Attia, K. Woronowicz, and M. Z. Youssef, "Hybrid fuel cell/battery rail car: A feasibility study," IEEE Trans. Transport. Electrific., vol.2, no.4, pp.493-503, 2016. DOI: 10.1109/TTE.2016.2608760
  9. H. Yin, W. Zhou, M. Li, C. Ma, and C. Zhao, "An Adaptive Fuzzy Logic-Based Energy Management Strategy on Battery/Ultracapacitor Hybrid Electric Vehicles," IEEE Trans. Transport. Electrific., vol.2, no.3, pp.300-311, 2016. DOI: 10.1109/TTE.2016.2552721
  10. M. H. Todorovic, L. Palma, and P. N. Enjeti, "Design of A Wide Input Range DC-DC Converter with A Robust Power Control Scheme Suitable for Fuel Cell Power Conversion," IEEE Trans. Ind. Electron., vol.55, no 3, pp.1247-1255, 2008. DOI: 10.1109/TIE.2007.911200
  11. H. Glickenstein, "March 2019 Land Transportation News [Transportation Systems]," IEEE Veh. Technol. Mag., vol.14, no.1, pp.18-26, 2019. DOI: 10.1109/MVT.2018.2881856
  12. H. Glickenstein, "March 2020 Land Transportation News [Transportation Systems]," IEEE Veh. Technol. Mag., vol.15, no.1, pp.12-13, 2020. DOI: 10.1109/mvt.2019.2959675
  13. Y. Yan, Q. Li, W. Chen, B. Su, J. Liu, and L. Ma, "Optimal Energy Management and Control in Multimode Equivalent Energy Consumption of Fuel Cell/Supercapacitor of Hybrid Electric Tram," IEEE Trans. Ind. Electron., vol.66, no.8, pp.6065-6076, 2019. DOI: 10.1109/TIE.2018.2871792
  14. N. Kim, S. Cha, and H. Peng, "Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle," IEEE Trans. Control Syst. Technol., vol.19, no.5, pp.1279-1287, 2011. DOI: 10.1109/TCST.2010.2061232
  15. D. Zhou, A. AI-Durra, I. Matraji, A. Ravey, and F. Gao, "Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles: A Fractional-Order Extremum Seeking Method," IEEE Trans. Ind. Electron., vol.65, no.8, pp.6787-6799, 2018. DOI: 10.1109/TIE.2018.2803723
  16. J. Wu, J. Ruan, N. Zhang, and P. D. Walker, "An optimized real-time energy management strategy for the power-split hybrid electric vehicles," IEEE Trans. Control Syst. Technol., vol.27, no.3, pp.1194-1202, 2019. DOI: 10.1109/TCST.2018.2796551
  17. K.-B. Lee, Advanced Power Electronics, munundang, 2019, ISBN 979-11-5692-402-9.
  18. Y. Bak, J.-S Lee, and K.-B. Lee, "Driving Method of Interior Permanent Magnet Synchronous Motor for Railroad Cars Using a Synchronous PWM Method," Journal of the Korean Society for Railway, vol.22, no.2, pp.129-139, 2019. https://doi.org/10.7782/jksr.2019.22.2.129
  19. J. Kim and B. H. Cho, "State-of-Charge Estimation and State-Of-Health Prediction Of a Li-ion Degraded Battery Based on an EKF Combined with a per Unit System," IEEE Trans. Veh. Technol., vol.60, no.9, pp.4249-4260, 2011. DOI: 10.1109/TVT.2011.2168987