References
- Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: current imaging approach and future perspectives. Korean J Radiol 2016;17:827-845 https://doi.org/10.3348/kjr.2016.17.6.827
- Chetelat G. Multimodal neuroimaging in Alzheimer's disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J Alzheimers Dis 2018;64:S199-S211 https://doi.org/10.3233/JAD-179920
- Groot C, van Loenhoud AC, Barkhof F, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology 2018;90:e149-e156 https://doi.org/10.1212/WNL.0000000000004802
- Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mildto-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol 2017;208:617-623 https://doi.org/10.2214/AJR.16.16894
- Ross DE, Ochs AL, DeSmit ME, Seabaugh JM, Havranek MD; Alzheimer's Disease Neuroimaging Initiative. Man versus machine Part 2: Comparison of radiologists' interpretations and NeuroQuant measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury. J Neuropsychiatry Clin Neurosci 2015;27:147-152 https://doi.org/10.1176/appi.neuropsych.13040088
-
Ross DE, Seabaugh J, Cooper L, Seabaugh J.
$NeuroQuant^{(R)}$ and$NeuroGage^{(R)}$ reveal effects of traumatic brain injury on brain volume. Brain Inj 2018;32:1437-1441 https://doi.org/10.1080/02699052.2018.1489980 - Steenwijk MD, Amiri H, Schoonheim MM, et al. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neuroimage Clin 2017;15:843-853 https://doi.org/10.1016/j.nicl.2017.06.034
- Lee JS, Kim C, Shin JH, et al. Machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease spectrum: development of the classifier and longitudinal evaluation. Sci Rep 2018;8:4161 https://doi.org/10.1038/s41598-018-22277-x
- Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR; Alzheimer's Disease Neuroimaging Initiative. Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546-552 https://doi.org/10.3174/ajnr.A5061
-
Persson K, Barca ML, Cavallin L, et al. Comparison of automated volumetry of the hippocampus using
$NeuroQuant^{(R)}$ and visual assessment of the medial temporal lobe in Alzheimer's disease. Acta Radiol 2018;59:997-1001 https://doi.org/10.1177/0284185117743778 - Niemantsverdriet E, Ribbens A, Bastin C, et al. A Retrospective Belgian multi-center MRI biomarker study in Alzheimer's disease (REMEMBER). J Alzheimers Dis 2018;63:1509-1522 https://doi.org/10.3233/JAD-171140
-
Ross DE, Ochs AL, Tate DF, et al. High correlations between MRI brain volume measurements based on
$NeuroQuant^{(R)}$ and FreeSurfer. Psychiatry Res Neuroimaging 2018;278:69-76 https://doi.org/10.1016/j.pscychresns.2018.05.007 - Collins DL, Pruessner JC. Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 2010;52:1355-1366 https://doi.org/10.1016/j.neuroimage.2010.04.193
- Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303-308 https://doi.org/10.1001/archneur.56.3.303
- McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944 https://doi.org/10.1212/WNL.34.7.939
- Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43:250-260 https://doi.org/10.1212/WNL.43.2.250
- Ryu HJ, Kim M, Moon Y, et al. Validation of the Korean version of the Lewy Body Composite Risk Score (K-LBCRS). J Alzheimers Dis 2017;55:1395-1401 https://doi.org/10.3233/JAD-160463
- Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-2477 https://doi.org/10.1093/brain/awr179
- Poewe W, Gauthier S, Aarsland D, et al. Diagnosis and management of Parkinson's disease dementia. Int J Clin Pract 2008;62:1581-1587 https://doi.org/10.1111/j.1742-1241.2008.01869.x
- Koo TK, Li MY. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155-163 https://doi.org/10.1016/j.jcm.2016.02.012
- Olejnik S, Algina J. Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemp Educ Psychol 2000;25:241-286 https://doi.org/10.1006/ceps.2000.1040
- Laubach M, Lammers F, Zacharias N, et al. Size matters: grey matter brain reserve predicts executive functioning in the elderly. Neuropsychologia 2018;119:172-181 https://doi.org/10.1016/j.neuropsychologia.2018.08.008
-
Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer's Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with
$NeuroQuant^{(R)}$ and FreeSurfer. J Neuroimaging 2015;25:721-727 https://doi.org/10.1111/jon.12229 - Reid MW, Hannemann NP, York GE, et al. Comparing two processing pipelines to measure subcortical and cortical volumes in patients with and without mild traumatic brain injury. J Neuroimaging 2017;27:365-371 https://doi.org/10.1111/jon.12431
- Jack CR Jr, Therneau TM, Weigand SD, et al. Prevalence of biologically vs clinically defined alzheimer spectrum entities using the national institute on aging-Alzheimer's association research framework. JAMA Neurol 2019;76:1174-1183 https://doi.org/10.1001/jamaneurol.2019.1971
- Wang C, Beadnall HN, Hatton SN, et al. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 2016;87:754-757 https://doi.org/10.1136/jnnp-2015-312304
- Schmitter D, Roche A, Marechal B, et al. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. Neuroimage Clin 2015;7:7-17 https://doi.org/10.1016/j.nicl.2014.11.001
- Roche A, Marechal B, Kober T, et al. Assessing brain volumes using MorphoBox prototype. MAGNETOM Flash 2017;68:33-37
- Ogawa A, Yamazaki Y, Ueno K, Cheng K, Iriki A. Inferential reasoning by exclusion recruits parietal and prefrontal cortices. Neuroimage 2010;52:1603-1610 https://doi.org/10.1016/j.neuroimage.2010.05.040
- Haller S, Falkovskiy P, Meuli R, et al. Basic MR sequence parameters systematically bias automated brain volume estimation. Neuroradiology 2016;58:1153-1160 https://doi.org/10.1007/s00234-016-1737-3
- Stelmokas J, Yassay L, Giordani B, et al. Translational MRI volumetry with NeuroQuant: effects of version and normative data on relationships with memory performance in healthy older adults and patients with mild cognitive impairment. J Alzheimers Dis 2017;60:1499-1510 https://doi.org/10.3233/JAD-170306
- Guo C, Ferreira D, Fink K, Westman E, Granberg T. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 2019;29:1355-1364 https://doi.org/10.1007/s00330-018-5710-x
Cited by
- Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy vol.5, 2020, https://doi.org/10.1177/20597002211018049