DOI QR코드

DOI QR Code

생체모방형 비대칭 나노채널을 갖는 산화알루미늄 분리막 제조 및 이온 정류 특성

Fabrication and Ionic Current Rectification Characteristics of Biomimetic Aluminum Oxide Membrane

  • 정재훈 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김종영 ((주) 넥스트이앤엠) ;
  • 최기운 ((주) 넥스트이앤엠) ;
  • 이준호 ((주) 넥스트이앤엠) ;
  • 강일석 (나노종합기술원) ;
  • 안치원 (나노종합기술원) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Jung, Jaehoon (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Kim, Jongyoung (NextE&M Research Institute, Environmental Research Center) ;
  • Choi, Kiwoon (NextE&M Research Institute, Environmental Research Center) ;
  • Lee, Joonho (NextE&M Research Institute, Environmental Research Center) ;
  • Kang, Il-suk (National Nanofab Center, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Chi-won (National Nanofab Center, Korea Advanced Institute of Science and Technology) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 투고 : 2020.05.04
  • 심사 : 2020.05.06
  • 발행 : 2020.06.30

초록

본 연구에서는 생체모방형 비대칭 분리막 제조방법인 사각펄스양극산화법의 비대칭성 한계를 극복하기 위해 최근 보고된 셀렌산 전해액을 이용하고 표면개질에 따른 정류특성을 평가하였다. 분리막의 비대칭 원뿔형 채널은 최소직경이 10 nm이고 최대직경이 50 nm이며 길이가 5 ㎛이었다. 분리막의 정류특성은 기존 황산 전해액에서 제작된 것보다 높았으며 +1V에서의 전류가 -1 V일 때보다 최대 2.9배를 나타내었다. 또한, 실란화 반응을 이용한 표면개질을 통해 술폰산기를 도입한 분리막은 반대로 -1 V에서의 전류가 +1 V일 때보다 전류의 최대 4.2배인 정류특성을 나타냈다. 실험에 대한 이론적 증명은 2D 모델에 수치해석 결과를 제시함으로써 뒷받침되었다. 본 연구의 결과는 서로 다른 정류방향을 갖는 두 종류의 이온 정류 분리막을 손쉽게 제작할 수 있는 방법을 제시하며 이온의 이동을 제어하기 위한 다양한 연구 분야에 활용될 수 있을 것으로 기대된다.

In the present study, a biomimetic alumina membrane was fabricated by using selenic acid as an electrolyte to overcome the asymmetry limit of the square pulse anodization process. The prepared membrane has conical channels with a minimum diameter of 10 nm, a maximum diameter of 50 nm, and a length of 5 ㎛. The rectification property was higher than membranes fabricated by sulfuric acid. It showed 2.9 times larger current at +1 V than -1 V. Also, the membrane, which sulfonic acid group was introduced by surface modification, showed 4.2 times larger rectification property at -1 V than +1 V. Theoretical verifications were supported by the numerical analyses of 2D models. The results of the present study present a convenient method to fabricate two type membranes with different rectification properties and are expected to be used to control ion transport.

키워드

참고문헌

  1. Z. Zhang, L. Wen, and L. Jaing, "Bioinspired smart asymmetric nanochannel membranes", Chem. Soc. Rev., 47(2), 322 (2018). https://doi.org/10.1039/C7CS00688H
  2. E. Gouaux and R. MacKinnon, "Priciples of selective ion transport in channels and pumps", Science, 310(5753), 1461 (2005). https://doi.org/10.1126/science.1113666
  3. L. J. Cheng and L. J. Guo, "Nanofluidic diodes", Chem. Soc. Rev., 39(3), 923 (2010). https://doi.org/10.1039/B822554K
  4. Z. S. Siwy, "Ion-current rectification in nanopores and nanotubes with broken symmetry", Adv. Funct. Mater., 16(6), 735 (2006). https://doi.org/10.1002/adfm.200500471
  5. W. Guo, L. Cao, J. Xia, F. Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, and L. Jiang "Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source", Adv. Funct. Mater., 20(8), 1339 (2010). https://doi.org/10.1002/adfm.200902312
  6. M. A. Alibakhshi, B. Liu, Z. Xu, and C. Duan, "Geometrical control of ionic current rectification in a configurable nanofluidic diode", Biomicrofluidics, 10(5), 054102 (2016). https://doi.org/10.1063/1.4962272
  7. D. He, E. Madrid, B. D. B. Aaronson, L. Fan, J. Dougty, K. Mathwig, A. M. Bond, Neil. B. McKeon, and F. Marken, "A cationic diode based on asymmetric nafion film deposition", ACS. Appl. Mater. Interfaces, 9(12), 11272 (2017). https://doi.org/10.1021/acsami.7b01774
  8. E. Choi, C. Wang, G. T. Chang, and J. Park, "High current ionic diode using homogeneousely charged asymmetric nanochannel network membrane", Nano. Lett., 16(4), 2189 (2016). https://doi.org/10.1021/acs.nanolett.5b04246
  9. J. Cervera. A. Alcaraz, B. Schiedt, R. Neumann, and P. Ramirez, "Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements", J. Phys. Chem. C., 111(33), 12265 (2007). https://doi.org/10.1021/jp071884c
  10. J. Jung, J. Kim, H. S. Lee, I. S. Kang, and K Choi, "Multi-asymmetric ion-diode membranes with superior selectivity and zero concentration polarization effect", ACS. Nano., 13(9), 10761 (2019). https://doi.org/10.1021/acsnano.9b05570
  11. K. Choi, Y. Yoon, J. Jung, C. W. Ahn, G. J. Lee, Y. M. Song, M. J. Ko, H. S. Lee, B. Kim, and I. S. Kang, "Super-antireflective structure films with precisely controlled refractive index profile", Adv. Opt. Mater., 5(3), 1600616 (2017). https://doi.org/10.1002/adom.201600616
  12. K. Nielsch, J. Choi, K. Schwim, R. B. Wehrspohn, and U. Gosele, "Self-ordering regimes of porous alumina: The 10 porosity rule", Nano. Lett., 2(7), 677 (2002). https://doi.org/10.1021/nl025537k
  13. W. Lee and S. J. Park, "Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures", Chem. Rev., 114(15), 7487 (2014). https://doi.org/10.1021/cr500002z
  14. O. Nishinaga, T. Kikuchi, S Natsui, and R. O. Suzuki, "Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing", Sci. Rep., 3, 2748 (2013). https://doi.org/10.1038/srep02748
  15. O. Nishinaga, T. Kikuchi, S. Natsui, and R. O. Suzuki, "Self-ordering behavior of anodic porous alumina via selenic acid anodizing", Electrochim. Acta, 137, 728 (2014). https://doi.org/10.1016/j.electacta.2014.06.078
  16. M. Kosmulski, "The pH-dependent surface charging and the points of zero charge", J. Colloid. Interf. Sci., 253(1), 77 (2002). https://doi.org/10.1006/jcis.2002.8490
  17. D. I. Petukhov and A. A. Eliseev, "Gas permeation through nanoporous membranes in the transitional flow region", Nanotechnology, 27(8), 085707 (2016). https://doi.org/10.1088/0957-4484/27/8/085707
  18. X. Jiang, N. Mishra, J. N. Turner, and M. G. Spencer, "Freestanding alumina membrane by double-layer anodization", IEEE. T. Nanotechnol, 226(3), 328 (2007).
  19. Y. F. Chen, Y. H. Hu, Y. I. Chou, S. M. Lai, and C. C. Wang, "Surface modification of nano-porous anodic alumina membranes and its use in electroosmotic flow", Sensor. Actuat. B. Chem., 145(1), 574 (2010).
  20. B. Zhang, J. G. Hong, S. Xie, S. Xia, and Y. Chen, "An integrative modeling and experimental study on the ionic resistance of ion-exchange membranes", J. Membr. Sci., 524, 362 (2017). https://doi.org/10.1016/j.memsci.2016.11.050
  21. J. Wang, M. Zhang, J. Zhai, and L. Jiang, "Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson-Nernst- Planck (PNP) model", Phys. Chem. Chem. Phys., 16(1), 23 (2014). https://doi.org/10.1039/C3CP51712H
  22. R. A. Robinson and R. H. Stokes, "Electrolyte Solutions", pp 253-283, 2nd Revised Edition, Courier Corporation, Chelmsford (2002).
  23. H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution", J. Electrochem. Soc., 144(5), L127 (1997). https://doi.org/10.1149/1.1837634
  24. L. J. Cheng and L. J. Guo, "Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices", ACS. Nano, 3(3), 575 (2009). https://doi.org/10.1021/nn8007542
  25. B. Yang, L. Leclercq, J. M. Clacens, and V. Nardello-Rataj, "Acidic/amphiphilic silica nanoparticles: New eco-friendly Pickering interfacial catalysis for biodiesel production", Green Chemistry, 19(19), 4552 (2017). https://doi.org/10.1039/C7GC01910F
  26. Y. Wang, D. Wang, M. Tan, B. Jiang, J. Zheng, N. Tsubaki, and M. Wu, "Monodispersed hollow $SO_3H$-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid", ACS Appl. Mater. Interfaces, 7(48), 26767 (2015). https://doi.org/10.1021/acsami.5b08797
  27. D. Kim and S. Nam, "Characterization of Sulfonated Silica Nanocomposite Electrolyte Membranes for Fuel Cell", J. Nanosci. Nanotechnol., 14(12), 8961 (2014). https://doi.org/10.1166/jnn.2014.10073
  28. Z. Siwy, E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin, "Conical-nanotube ion-current rectifiers: The role of surface charge", J. Am. Chem. Soc., 126(35), 10850 (2004). https://doi.org/10.1021/ja047675c