DOI QR코드

DOI QR Code

Nanocomposite Water Treatment Membranes: Antifouling Prospective

수처리용 나노복합막: 방오의 관점에서

  • Kim, Soomin (Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 김수민 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2020.06.03
  • Accepted : 2020.06.17
  • Published : 2020.06.30

Abstract

In the aspect of saving energy and water, facilitating the separation membrane for the water treatment has been rising recently as one of the possible solutions. However, microbial biofouling effect is the biggest obstacle that hinders reaching higher permeability over a prolonged period of nanofiltration operation. To solve this problem and fully utilize the filtration membranes with enhanced performance, largely two kinds of solutions are studied and the first and the most commonly mentioned type is the one using the silver nanoparticles. Since silver nanoparticles are important to be well tailored on membrane surface, various methods have been applied and suggested. Using silver nanoparticles however also has the drawbacks or possible toxicity risks, raising the need for other types of utilizing non silver particles to functionalize the membrane, such as copper, graphene or zinc oxides, and amine moieties. Each attempt included in either kind has produced some notable results in killing, preventing, or repelling the bacteria while at the same time, left some unsolved points to be evaluated. In this review, the effects of metal nanoparticles and other materials on the antifouling properties of water treatment membranes are summarized.

수처리용 멤브레인의 기능 개선은 물과 에너지 자원 부족의 문제를 해결할 대표적인 과제로 떠오르고 있다. 나노 멤브레인을 활용한 정수 과정이 실용 가능할 수준에 도달하려면, 여과막의 표면에 박테리아나 미생물이 축적되는 생물 오손(biofouling)을 해소하는 전략이 필수적으로 고안되어야 한다. 더 높은 내구성을 가지면서도 기본적인 목적인 여과에 대한 성능 저하 없이 작동하는 수처리용 멤브레인을 합성하기 위해 현재 수많은 연구가 진행되고 있으며, 이러한 연구들에서 다루어지는 전략들은 크게 두 가지 종류로 분류될 수 있다. 이 중 일반적으로 제시되는 유형은 멤브레인의 표면에 은 나노 입자를 고정하는 방식이다. 은 나노 입자를 활용하는 방법에도, 은 나노 입자가 오염 방지의 역할을 효과적으로 수행하는 데 필요한 표면과의 유의미한 결합을 실현하기 위해 여러 가지 세부 전략들이 제안되어진다. 은 나노 입자를 사용하는 방식에서 단점이나 독성 유발 가능성 등의 위험성이 제기되면서, 은 외에도 구리, 그래핀 또는 아연 산화물, 아민 부분과 같은 물질의 입자들을 적용하여 멤브레인을 알맞게 기능화 하는 유형의 연구들 또한 진행되었다. 위 두 가지 유형의 전략들을 주제로 한 연구들은 여러 번의 시도와 실험을 거쳐 합성된 멤브레인의 표면에서 박테리아의 박멸이나 그의 번식을 예방하는 등의 몇 가지 주목할 만한 성과를 낳았으며, 향후 추가적인 연구가 필요한 점들을 제시하였다. 본 리뷰논문은 금속 나노 입자 및 기타 물질들이 수처리용 멤브레인의 표면과 결합하여 그의 방오화 특성에 기인하는 영향을 조사한 연구들에 대하여 다루고 있다.

Keywords

References

  1. E. O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valero, and T. H. Mekonnen, "Engineered nanomaterials for antimicrobial applications: A review", Appl. Mater. Today, 18, 100473 (2020). https://doi.org/10.1016/j.apmt.2019.100473
  2. R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, and Z. Jiang, "Antifouling membranes for sustainable water purification: Strategies and mechanisms", Chem. Soc. Rev., 45, 5888 (2016). https://doi.org/10.1039/C5CS00579E
  3. S. F. Anis, R. Hashaikeh, and N. Hilal, "Functional materials in desalination: A review", Desalination, 468, 114077 (2019). https://doi.org/10.1016/j.desal.2019.114077
  4. P. S. Goh, A. K. Zulhairun, A. F. Ismail, and N. Hilal, "Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review", Desalination, 468, 114072 (2019). https://doi.org/10.1016/j.desal.2019.114072
  5. M. S. Sri Abirami Saraswathi, A. Nagendran, and D. Rana, "Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: A review", J. Mater. Chem. A, 7, 8723 (2019). https://doi.org/10.1039/C8TA11460A
  6. J. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, and V. Chen, "Polymeric antimicrobial membranes enabled by nanomaterials for water treatment", J. Membr. Sci., 550, 173 (2018). https://doi.org/10.1016/j.memsci.2017.12.071
  7. B. M Jun, H. K. Lee, W. J. Kim, J. Park, K. J. H. Kim, and Y. N. Kwon, "Current research trends on surface modification of pressure-driven membranes for fouling mitigation", Membr. J., 28, 1 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.1
  8. D.-E. Kwon and J. Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse applications", Membr. J., 28, 196 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.196
  9. E. Park, H. Jang, N. Choi, S. Lee, and J. Kim, "Feasibility of pyrophyllite ceramic membrane for wastewater treatment and membrane fouling", Membr. J., 26, 205 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.205
  10. H. Jang, "Technology trend on commercial polymeric membranes for water treatment", Membr. J., 29, 11 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.11
  11. S. Kim, Y. Kim, D. Kim, S. Kim, and J. F. Kim, "Solvent filtration performance of thin film composite membranes based on polyethersulfone support", Membr. J., 29, 348 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.348
  12. S. Y. Lee, H. J. Kim, R. Patel, S. J. Im, J. H. Kim, and B. R. Min, "Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties", Polym. Adv. Technol., 18, 562 (2007). https://doi.org/10.1002/pat.918
  13. S. H. Park, S. H. Kim, S. J. Park, S. Ryoo, K. Woo, J. S. Lee, T. S. Kim, H. D. Park, H. Park, Y. I. Park, J. Cho, and J. H. Lee, "Direct incorporation of silver nanoparticles onto thin-film composite membranes via arc plasma deposition for enhanced antibacterial and permeation performance", J. Membr. Sci., 513, 226 (2016). https://doi.org/10.1016/j.memsci.2016.04.013
  14. S. H. Park, Y. S. Ko, S. J. Park, J. S. Lee, J. Cho, K. Y. Baek, I. T. Kim, K. Woo, and J. H. Lee, "Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties", J. Membr. Sci., 499, 80 (2016). https://doi.org/10.1016/j.memsci.2015.09.060
  15. M. Zhang, R. W. Field, and K. Zhang, "Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties", J. Membr. Sci., 471, 274 (2014). https://doi.org/10.1016/j.memsci.2014.08.021
  16. L. Huang, S. Zhao, Z. Wang, J. Wu, J. Wang, and S. Wang, "In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane", J. Membr. Sci., 499, 269 (2016). https://doi.org/10.1016/j.memsci.2015.10.055
  17. M. He, Q. Wang, R. Wang, Y. Xie, W. Zhao, and C. Zhao, "Design of antibacterial poly(ether sulfone) membranes via covalently attaching hydrogel thin layers loaded with Ag nanoparticles", ACS Appl. Mater. Interfaces, 9, 15962 (2017). https://doi.org/10.1021/acsami.7b03176
  18. Q. Liu, Z. Zhou, G. Qiu, J. Li, J. Xie, and J. Y. Lee, "Surface reaction route to increase the loading of antimicrobial Ag nanoparticles in forward osmosis membranes", ACS Sustain. Chem. Eng., 3, 2959 (2015). https://doi.org/10.1021/acssuschemeng.5b00931
  19. D. Y. Zhang, J. Liu, Y. S. Shi, Y. Wang, H. F. Liu, Q. L. Hu, L. Su, and J. Zhu, "Antifouling polyimide membrane with surface-bound silver particles", J. Membr. Sci., 516, 83 (2016). https://doi.org/10.1016/j.memsci.2016.06.012
  20. M. Sharma, N. Padmavathy, S. Remanan, G. Madras, and S. Bose, "Facile one-pot scalable strategy to engineer biocidal silver nanocluster assembly on thiolated PVDF membranes for water purification", RSC Adv., 6, 38972 (2016). https://doi.org/10.1039/C6RA03143A
  21. J. Wu, C. Yu, and Q. Li, "Novel regenerable antimicrobial nanocomposite membranes: Effect of silver loading and valence state", J. Membr. Sci., 531, 68 (2017). https://doi.org/10.1016/j.memsci.2017.02.047
  22. M. S. Rahaman, H. Therien-Aubin, M. Ben-Sasson, C. K. Ober, M. Nielsen, and M. Elimelech, "Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes", J. Mater. Chem. B, 2, 1724 (2014). https://doi.org/10.1039/c3tb21681k
  23. Z. Liu and Y. Hu, "Sustainable antibiofouling properties of thin film composite forward osmosis membrane with rechargeable silver nanoparticles loading", ACS Appl. Mater. Interfaces, 8, 21666 (2016). https://doi.org/10.1021/acsami.6b06727
  24. X. Zhu, R. Bai, K. H. Wee, C. Liu, and S. L. Tang, "Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances", J. Membr. Sci., 363, 278 (2010). https://doi.org/10.1016/j.memsci.2010.07.041
  25. H. R. Chae, J. Lee, C. H. Lee, I. C. Kim, and P. K. Park, "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance", J. Membr. Sci., 483, 128 (2015). https://doi.org/10.1016/j.memsci.2015.02.045
  26. X. Huang, K. L. Marsh, B. T. McVerry, E. M. V. Hoek, and R. B. Kaner, "Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide", ACS Appl. Mater. Interfaces, 8, 14334 (2016). https://doi.org/10.1021/acsami.6b05293
  27. J. Zhu, A. Uliana, J. Wang, S. Yuan, J. Li, M. Tian, K. Simoens, A. Volodin, J. Lin, K. Bernaerts, Y. Zhang, and B. Van Der Bruggen, "Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles: Via fast bioinspired deposition", J. Mater. Chem. A, 4, 13211 (2016). https://doi.org/10.1039/C6TA05661J
  28. S. Javdaneh, M. R. Mehrnia, and M. Homayoonfal, "Engineering design of a biofilm formed on a pH-sensitive ZnO/PSf nanocomposite membrane with antibacterial properties", RSC Adv., 6, 112269 (2016). https://doi.org/10.1039/C6RA11899B
  29. B. Diez, N. Roldan, A. Martin, A. Sotto, J. A. Perdigon-Melon, J. Arsuaga, and R. Rosal, "Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes", J. Membr. Sci., 526, 252 (2017). https://doi.org/10.1016/j.memsci.2016.12.051