
J. lnf. Commun. Converg. Eng. 18(2): 82-87, Jun. 2020 Regular paper
Adaptable Online Game Server Design

Jintaek Seo* , Member, KIICE

Game Development Track of International College, Dongseo University, Busan 47011, Rep. of Korea

Abstract

This paper discusses how to design a game server that is scalable, adaptable, and re-buildable with components. Furthermore, it

explains how various implementation issues were resolved. To support adaptability, the server comprises three layers: network,

user, and database. To ensure independence between the layers, each layer was designed to communicate with each other only

via message queues. In this architecture, each layer can have an arbitrary number of threads; thus, scalability is guaranteed for

each layer. The network layer uses input/output completion ports(IOCP), which shows the best performance on the Windows

platform, it can handle up to 5,000 simultaneous connections on a typical entry-level computer, despite being built with a single-

threaded user layer. To completely separate the database from the game server, the SQL code was not directly embedded in the

database layer.

Index Terms: IOCP, Layered Server Architecture, Multi-threaded Architecture, Online Game Server

I. INTRODUCTION

During the design and implementation of a game server, it

is important to create and maintain a reusable code. Servers

with desired functions can be configured by assembling

reusable server components as blocks. A reusable component

means the combination of functions and classes that make up

a specific feature of the server. Reuse of a component

requires a standard environment, wherein the component

operates accurately.

The basic structure of the game server can be designed

such that the cost of the components, which make up the

server is minimized. Different games have several similar

components irrespective of their genre; therefore, it can be

useful to design a common game server structure. Construct-

ing components that can be used by most servers can reduce

the server building cost. Additionally, the components can be

configured such that they can be easily extended when the

devices are required to be extended in parallel.

In this study, a scalable server architecture that minimizes

the cost of the components being used for the server is pro-

posed and implemented.

II. RELATED WORKS

Modern massively multiplayer online game servers capable

of handling a large number of connections have nearly identi-

cal cell or grid structures [1]. Furthermore, their performances

are constantly improving owing to lock-free containers [2].

The design of the game server facilitate communication

between different servers. Moreover, the server configuration

should make the server adaptable to meet the needs of various

game clients [3, 4]. This study proposes a design method based

on components and layers so that a game server can be config-

ured to satisfy various requirements of the game clients.

In a real-world scenario, several users are simultaneously

connected to an online game. Access information of each

82

Received 16 March 2020, Revised 10 June 2020, Accepted 15 June 2020
*Corresponding Author Jintaek Seo (E-mail: jintaeks@dongseo.ac.kr, Tel: +82-51-320-2955)
Game Track, International College, Dongseo University, Busan, 47011, Rep. of Korea.

https://doi.org/10.6109/jicce.2020.18.2.82 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

https://orcid.org/0000-0002-0130-3770

Adaptable Online Game Server Design
user is managed in the database. However, a single game

server cannot process all the users managed by the database.

Therefore, multiple game servers connect to one database. In

this configuration, users should be able to chat or set up a

party with other users, even if they are connected to different

game servers. Therefore, a server that connects multiple

game servers is required [5, 6]. Such a server is termed as

the “center server” in this paper.

In this study, an architecture is proposed that is applicable

to all types of game servers configured in the structure of a

typical online game server as shown in Fig. 1.

III. LAYERED ARCHITECTURE OF GAME SERVER

The game server receives packets from multiple clients

such as mobiles, desktops, and web applications [7]. It main-

tains the information of all connected clients, processes

game-related requests, and handles processing between the

clients when necessary. Additionally, it stores the clients'

game progress information in the database. This server must

be capable of handling a DoS attack [8].

Based on its core functions, a game server can comprise

the following three layers: the network, user and database

layers. The network layer facilitates packet exchange with

clients; the user layer processes user information; and the

database layer processes database requests. Each layer must

be independently extensible and maintainable; therefore, the

structure design should minimize dependency between lay-

ers.

This can be achieved by a server design involving three

layers as shown in Fig. 2. To reduce dependency between the

layers, they are prohibited from directly communicating with

each other; they can communicate only through message

queues.

A. Network Layer

The input/output completion ports (IOCP) is the most pre-

ferred way to send and receive packets using sockets on the

Windows platform [9]. The socket's accept function is a

blocking call; therefore, it is necessary to process this func-

tionality in a thread. If the connection handling function of a

socket creates and returns a socket for a new connection, it

will be associated with the IOCP. The I/O for such a socket

can be notified via the IOCP. To receive IOCP notification, a

IOCP worker thread calls the IOCP event wait function for

the registered port of IOCP. Each IOCP worker thread finds

the client information for the completion of I/O, constructs

the packet by deserializing the packet for each I/O, and

pushes the constructed packet into the queue of the corre-

sponding user.

In certain cases, when the game server needs to communi-

cate to the center server, it directly sends the packets to the

center server.

B. User Layer

The user layer can be designed to be either single- or

multi-threaded, depending on the operating mode of the

game. A component operating in a single thread environment

can be built first; then, by creating a user distribution man-

ager, a scalable user layer can be built. In this study, a sin-

gle-threaded user layer was implemented.

In the user layer, each user has its own message queue.

However, in the multi-threaded environment, a message

queue may be shared for communication between groups of

users within the user layer. The user layer has a loop that

processes user requests. It operates on an individual user

basis. Furthermore, a method must be designed to obtain the

user information of other users connected to other servers

when requested by a user. For database processing, the user

communicates through the database message queue.

Fig. 1. Clients connected to game servers. One center server manages

multiple game servers. All servers are connected to a database.

Fig. 2. Layered architecture of game server.
83 http://jicce.org

J. lnf. Commun. Converg. Eng. 18(2): 82-87, Jun. 2020
C. Database Layer

The database layer is responsible for processing messages

intended for the database. For maximum performance, multi-

ple database related message processing threads run simulta-

neously, where each thread's messages are independent of

the other threads' messages. All dependencies between the

messages are handled at the user layer; therefore, there is no

dependency between the messages at the database layer. This

configuration guarantees the scalability of the database layer.

To guarantee, independence between the game server and

database, all SQL routines that modify database tables oper-

ate only in the database; the game server only calls a corre-

sponding stored procedure. Fig. 3. illustrates the interaction

between these three layers.

D. Key Components and Implementation Issues

1) Thread classes

Class KThread is generally defined for the operation of

multiple threads. This class can be inherited to implement a

specific thread. In our study, for the network layer socket

connections, we define the class: KSocketAccepterThread.

For the IOCP working thread in the network layer, we define

the class: KIocpWorkerThread. We define the class: KUser-

Thread to handle the processing in the user layer. Further-

more, we define the class: KMyDbThread that processes

database messages at the database layer. Each thread has ref-

erence information about the thread manager that manages it.

If the thread is not managed by the manager, the reference to

KThreadManager is set as NULL.

Given that only queues are shared between threads, there

are no synchronization issues for global data. Fig. 4 illus-

trates the class hierarchy of the thread classes.

2) Layer classes

There is only one instance for each layer. We implemented

the KNetLayer, KUserLayer, and KDbLayer layers by inher-

iting the classes from KBaseSingleton for the functionality

of a singleton. An instance of class KUser is created for each

client connection, class KUser inherits from class KSession

because it has the socket connection information. If multiple

threads are used for the user layer, users belonging to the

same thread group are managed by one KUserManager.

This structural information is managed by a server object

of class KBaseServer. Class KIocp that is responsible for the

Fig. 4. Class hierarchy of threads in game server.

Fig. 5. Class hierarchy of the game server layers.

Fig. 3. Layered game server structure with components: Each socket

connection has a corresponding IOCP. IOCP worker threads process I/O

data. The user layer thread creates a queue for each connection. There is one

thread in the user layer. Although there are several threads in the database

layer, there is only one queue for the database related message.
https://doi.org/10.6109/jicce.2020.18.2.82 84

Adaptable Online Game Server Design
IOCP function is accessed only at the network layer. KIocp

is a singleton class; however in our implementation, another

layer cannot access the instance of this class.

The queue for message communication in each thread is

implemented as a class KWorkQueue, and each instance that

requires message communication has a work queue. Fig. 5

illustrates the class hierarchy of these classes.

3) Packet design issues

Each layer communicates only via messages; therefore, we

must define multiple messages for a specific task. The server

wraps the packet in the form of a message that is then sent/

received to/from a layer or another server or database.

Table 1 lists the machines that can send or receive mes-

sages.

Packets that request database processing are only used in

the server; it starts with DB to distinguish from normal net-

work layer packet that starts with GS.

The message name has the following format:

2Byte Sender + 2Byte Receiver + Message Name

Table 2 lists possible messages sent and received between

machines.

For example, the message sent by the client to the game

server to update the user's health power (HP) is CLGS_UP-

DATE_HP_REQ.

The header of the message data includes the IDs of the

sending and receiving layers. Therefore, when the server

processes a message, it determines the target layer and

enqueues the message to the target layer's receive queue.

For example, to update user's HP, the following messages

are required:

CLGS_UPDATE_HP_REQ : Client requests HP update

DB_UPDATE_HP_REQ : User layer enqueues it to DB

layer

DB_UPDATE_HP_ACK : Database response

GSCL_UPDATE_HP_ACK : User layer responds to cli-

ent

Messages that require a response specify a REQ/ACK at

the end of the message name. For packets that only intend to

inform, a “NOT” is specified at the end of the name.

4) Database issues

We built a database using Microsoft SQL Server. The SQL

used to retrieve information from the database can be imple-

mented either on the game server or in the database.

The problem with implementing SQL on a game server is

that server and the database development are not indepen-

dent. The database must be maintainable independent of the

server.

Therefore, the SQL routine to obtain the user's information

should be present in the database; the game server should

only request and receive the result according to the SQL

interface. This is depicted in Fig. 6. To achieve this, for each

stored procedure in the database, we must generate the

appropriate corresponding class source to be used by the

game server. These tasks have specific rules; therefore, we

have created a tool that generates classes from SQL; this

avoids errors.

5) Operator's issues

Online games usually have regular weekly checks. How-

ever, stopping the operation of a game server should be done

with caution because all users get disconnected. In certain

cases, it is necessary to activate the game server's specific

features, observe statistical metrics, etc. without stopping the

game server.

Fig. 6. Game server can host SQL routines; however, to separate server

and database development, the server should be configured only to call

stored procedures.

Table 1. 2-Character Machine Type IDs.

Sender type Packet prefix ID

Client CL

Center Server CS

Game Server

Network Layer GS

User Layer N/A

Database Layer DB

Database N/A

Table 2. 4-Character Sender Receiver ID.

Receiver

CL CS GS
User-

Layer
DB

Data-

base

S
e
n
d
e
r

CL CLCL N/A CLGS N/A N/A N/A

CS N/A N/A CSGS N/A N/A N/A

GS GSCL GSCS GSGS N/A DB N/A

User Layer N/A N/A N/A N/A DB N/A

DB N/A N/A DB DB N/A SP Call

Database N/A N/A N/A N/A SP Ret
85 http://jicce.org

J. lnf. Commun. Converg. Eng. 18(2): 82-87, Jun. 2020
To this end, the main thread of the game server must have

the features to export functions that the operator can call and

execute from the server console. We added an operator con-

sole to the main thread. A built-in scripting language allows

the operator to control certain server functions [10].

IV. IMPLEMENTATION AND TEST

We measured the performance of the game server on a

typical entry-level computer. Table 3 presents the server test

environment.

Table 4 presents the server test result for multiple clients.

We first created a test client that connects to the server and

then performed a load test. The server, implemented on the

Windows platform, provided reliable performance up to

5,000 client connections. Every time the number of client

connections grows, the memory requirement increases linearly;

however, the CPU usage does not change significantly.

Fig. 7. and Fig. 8. show online games developed by KOG.

Th-ese games use the server architecture proposed in this

paper.

V. CONCLUSION

In this study, we divided the basic components of the

game server into three layers. We implemented the required

functions in each layer and the send and receive information

through message queues so that each layer can be extended

independently. This implementation demonstrated that the

game server can handle up to 5,000 concurrent connections

even though the user layer is implemented as a single thread.

The implemented server has a task-parallel architecture.

However, if we apply data-parallel architecture to the user

layer, the server architecture can be made comparatively

more flexible. As future research, we will apply data paral-

lelism to improve server performance.

APPENDIX

A. Online game based on the proposed game server archi-

tecture

Elsword (Korean: 엘소드) is a free-to-play, 2.5D action

MMORPG developed by the South Korean company: KOG

Studios. It features real-time action gameplay and includes

both player vs. environment and player vs. player modes.

Ultimate Race is an MMORPG style racing game devel-

oped by KOG.

Fig. 8. Ultimate Race developed by KOG uses the server architecture

proposed in this paper.

Fig. 7. Elsword developed by KOG uses the server architecture proposed in

this paper.

Table 3. Game Server Test Environment

Item Details

CPU Intel Core i7-6, 500U

Core Speed 3,000 MHz

of Cores 2

Memory Type DDR3

Memory Size 8 GB

of IOCP Worker Threads 4

of User Threads 1

of DB Worker Threads 4

of Socket Accepter Threads 1

Maximum # of Robots 5,000 clients

Table 4. Test Results

of Clients Memory (Unit: MB) CPU(%)

1,000 4,196 81

2,000 4,697 81

3,000 5,202 82

4,000 5,708 83

5,000 6,310 83
https://doi.org/10.6109/jicce.2020.18.2.82 86

Adaptable Online Game Server Design
ACKNOWLEDGEMENT

We would like to thank Editage (www.editage.co.kr) for

English language editing and KOG(www.kog.co.kr) for

game posters.

REFERENCES

[1] B. V. D. Bossche, T. Verdickt, B. D. Vleeschauwer, S. Desmet, S. D.

Mulder, F. D. Turck, B. Dhoedt and P. Demeester, “A platform for

dynamic microcell redeployment in massively multiplayer online

games,” in NOSSDAV '06 Proceedings of the 2006 International

Workshop on Network and Operating Systems, Nov., 2006. DOI:

10.1145/1378191.1378195.

[2] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen

and C. Griwodz, “A demonstration of a lockless, relaxed atomicity

state parallel game server (LEARS),” in NetGames '11 Proceedings

of the 10th Annual Workshop on Network and Systems Support for

Games, Oct., 2011. DOI: 10.1109/NetGames.2011.6080994.

[3] F. Glinka, A. Ploss and S. Gorlatch, “RTF: a real-time framework for

developing scalable multiplayer online games,” in Proceedings of the

6th ACM SIGCOMM Workshop on Network and System Support for

Games(NetGames '07), pp. 81-86, Melbourne, Australia, Sep. 2007.

DOI: 10.1145/1326257.1326272.

[4] A. Ploss, F. Glinka, S. Gorlatch and J. Müller-Iden, “Towards a high-

level design approach for multi-server online games,” in Prooceedings

of the 8th International Conference on Intelligent Games and

Simulation (GAMEON '07), pp. 10-17, Bologna, Italy, Nov. 2007.

[5] J. Brun, F. Safaei, and P. Boustead, “Server topology considerations

in online games,” in Proceedings of the 4th ACM Network and

System Support for Games (NetGames), (Singapore), Oct. 2006.

DOI: 10.1145/1230040.1230094.

[6] K. W. Lee, B. J. Ko, and S. Calo, “Adaptive server selection for large

scale interactive online games,” in Proceedings of NOSSDAV,

(Kinsale, County Cork, Ireland), Jun. 2004. DOI: 10.1016/j.comnet.

2005.04.006.

[7] M. H. Choi and I. Y. Moon, “Development of branch processing

system using WebAssembly and JavaScript,” Journal of Information

and Communication Convergence Engineering, vol. 17, no. 4, pp.

234-238, Dec. 2019. DOI: 10.6109/jicce.2019.17.4.234.

[8] K. Rim and D. Lim, “DoS attack control design of IoT system for 5G

era,” Journal of Information and Communication Convergence

Engineering, vol. 16, no. 2, pp. 93-98, Jun. 2018. DOI: 10.6109/

jicce.2018.16.2.93.

[9] A. Jones and J. Ohlund, Network Programming for Microsoft

Windows, 2nd ed, Microsoft Press, 2002.

[10] W. Celes, L. H. de Figueiredo et al, “Binding C/C++ objects to lua,”

in Game Programming Gems 6, M. Dickheiser, Ed., pp. 341-355,

Charles River Media, Rockland, Mass, USA, 2006.

Jintaek Seo

received his B.E. and M.S. degrees in 1996 from Kyungpook National University, Daegu, Korea. He completed his Ph.D.

course from Kyungpook National University. He co-founded a game company after graduation in 2000 and worked with the

same for 16 years before moving to Dongseo University, Busan, Korea. His research interests include game server, game

design, 3D game technology, AI, and deep neural networks.
87 http://jicce.org

