DOI QR코드

DOI QR Code

Comparison of the outcomes of three-dimensional finite element analysis under arbitrary and realistic occlusal loading conditions in mandibular posterior region

하악 구치부에서 임의로 부여된 교합과 실제 교합의 삼차원 유한요소해석결과의 비교

  • Lee, Wonsup (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Alom, Ghaith (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Soo (Department of Computer Science and Engineering, Seoul National University) ;
  • Park, Young-Seok (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute) ;
  • Lim, Young-Jun (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Joo (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 이원섭 (서울대학교 치의학대학원 치과보철과) ;
  • ;
  • 김명수 (서울대학교 공과대학 컴퓨터공학부) ;
  • 박영석 (서울대학교 치의학대학원 구강해부학교실 및 치학연구소) ;
  • 임영준 (서울대학교 치의학대학원 치과보철과 및 치학연구소) ;
  • 김명주 (서울대학교 치의학대학원 치과보철과 및 치학연구소) ;
  • 권호범 (서울대학교 치의학대학원 치과보철과 및 치학연구소)
  • Received : 2020.05.13
  • Accepted : 2020.06.04
  • Published : 2020.06.30

Abstract

Purpose: The purpose of this study was to compare the biomechanical outcome in the mandibular posterior region between two different loading conditions by finite element analysis. Materials and Methods: The mandibular posterior teeth model and the implant model were generated for the study. And 2 different types of loading conditions were provided: Arbitrary occlusion and natural occlusion obtained from the digital occlusal analyzer, Accura (Accura, Dmetec Co. Ltd., Seoul, Korea). Total load of 100 N was evenly distributed over arbitrary occlusion points, and 100 N load was differentially distributed over natural occlusion points according to Accura data. The biomechanical outcome was evaluated by the finite element analysis software. Results: The result of finite element analysis showed considerable difference in both von Mises stress pattern and displacement under different loading conditions. Conclusion: In finite element analysis, it is recommended to simulate a realistic occlusal loading pattern that is based on accurate measurement.

목적: 본 연구의 목적은 하악 구치부에서 두 가지 서로 다른 부하 양식에 따른 생역학적 결과를 비교하는 것이었다. 연구 재료 및 방법: 하악 구치부 자연치열 및 임플란트 모델을 제작하였으며, 임의로 부여된 교합과 아큐라 디지털 교합측정장치로 획득한 실제 교합 두 가지 하중 조건을 부여하였다. 임의로 부여된 교합의 경우, 총 100 N 하중을 교합점에 균일하게 배분하였으며, 실제 교합의 경우는 총 100 N 하중을 아큐라(Accura, Dmetec Co. Ltd., Seoul, Korea)로 측정된 정보에 근거하여 교합점에 차등 배분하였다. 하중에 대한 응력과 변위를 유한요소해석을 이용하여 분석하였다. 결과: 유한요소해석 결과, 서로 다른 부하 조건 하에서 등가응력 및 변위 모두 상당한 차이를 보였다. 결론: 유한요소해석 수행 시 정확한 측정에 기반한 실제 교합에 가까운 부하 조건을 재현하는 것이 추천된다.

Keywords

References

  1. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  2. DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol 2000;26:77-81. https://doi.org/10.1563/1548-1336(2000)026<0077:TROTFE>2.3.CO;2
  3. Trivedi S. Finite element analysis: a boon to dentistry. J Oral Biol Craniofac Res 2014;4:200-3. https://doi.org/10.1016/j.jobcr.2014.11.008
  4. Shetty P, Hegde AM, Rai K. Finite element method-an effective research tool for dentistry. J Clin Pediatr Dent 2010;34:281-5. https://doi.org/10.17796/jcpd.34.3.yu44334815546435
  5. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent 2004;91:144-50. https://doi.org/10.1016/j.prosdent.2003.10.018
  6. Hernandez-Vazquez RA, Romero-Angeles B, Urriolagoitia-Sosa G, Vazquez-Feijoo JA, Vazquez-Lopez AJ, Urriolagoitia-Calderon G. Numerical analysis of masticatory forces on a lower first molar considering the contact between dental tissues. Appl Bionic Biomech 2018:2018:4196343. https://doi.org/10.1155/2018/4196343
  7. Benazzi S, Grosse IR, Gruppioni G, Weber GW, Kullmer O. Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig 2014;18:369-75. https://doi.org/10.1007/s00784-013-0973-8
  8. Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress - a contact finite element analysis of indirect axial loading. Mater Sci Eng C Mater Biol Appl 2019;99:367-73. https://doi.org/10.1016/j.msec.2019.01.104
  9. Roehrle O, Saini H, Ackland DC. Occlusal loading during biting from an experimental and simulation point of view. Dent Mater 2018;34:58-68. https://doi.org/10.1016/j.dental.2017.09.005
  10. Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 2018;4:7. https://doi.org/10.1186/s40729-018-0119-5
  11. De Jager N, de Kler M, van der Zel JM. The influence of different core material on the FEA-determined stress distribution in dental crowns. Dent Mater 2006;22:234-42. https://doi.org/10.1016/j.dental.2005.04.034
  12. Kondo T, Wakabayashi N. Influence of molar support loss on stress and strain in premolar periodontium: a patient-specific FEM study. J Dent 2009;37:541-8. https://doi.org/10.1016/j.jdent.2009.03.015
  13. Rand A, Stiesch M, Eisenburger M, Greuling A. The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis. Comput Methods Biomech Biomed Engin 2017;20:1132-9. https://doi.org/10.1080/10255842.2017.1338691
  14. Cailleteau JG, Rieger MR, Akin JE. A comparison of intracanal stresses in a post-restored tooth utilizing the finite element method. J Endodont 1992;18:540-4. https://doi.org/10.1016/S0099-2399(06)81210-0
  15. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support prosthesis type and loading during function. J Prosthet Dent 1996;76:633-40. https://doi.org/10.1016/S0022-3913(96)90442-4
  16. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations - a 3D finite element analysis. Dent Mater 2002;18:295-303. https://doi.org/10.1016/S0109-5641(01)00042-2
  17. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent 2004;91:144-50. https://doi.org/10.1016/j.prosdent.2003.10.018
  18. Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel glass and carbon posts in a maxillary incisor. Dent Mater 2005;21:709-15. https://doi.org/10.1016/j.dental.2004.09.010
  19. Mozayek RS, Allaf M, Abuharb MB. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis. J Dent Res Dent Clin Dent Prospects 2016;10:81-6. https://doi.org/10.15171/joddd.2016.013
  20. Jeong MY, Lim YJ, Kim MJ, Kwon HB. Comparison of two computerized occlusal analysis systems for indicating occlusal contacts. J Adv Prosthodont 2020;12:49-54. https://doi.org/10.4047/jap.2020.12.2.49
  21. Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc 1937;24:1260-70.
  22. Yoshida N, Koga Y, Peng CL, Tanaka E, Kobayashi K. In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phy 2001;23:567-72. https://doi.org/10.1016/S1350-4533(01)00073-X
  23. Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84:428-33. https://doi.org/10.1177/154405910508400506
  24. Moroi HH, Okimoto K, Moroi R, Terada Y. Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int J Prosthodont 1993;6:564-72.
  25. Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 1994;73:1205-11. https://doi.org/10.1177/00220345940730061201
  26. Farah JW, Craig RG, Meroueh KA. Finite element analysis of three- and four-unit bridges. J Oral Rehabil 1989;16:603-11. https://doi.org/10.1111/j.1365-2842.1989.tb01384.x
  27. Jones ML, Hickman J, Middleton J, Knox J, Volp C. A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod 2001;28:29-38. https://doi.org/10.1093/ortho/28.1.29
  28. Tanne K, Yoshida S, Kawata T, Sasaki A, Knox J, Jones ML. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod 1998;25:109-15. https://doi.org/10.1093/ortho/25.2.109
  29. Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop 2003;123:657-65. https://doi.org/10.1016/S0889-5406(03)00164-1
  30. Jung WK, Lee WS, Kwon HB. Effects of abutment screw preload in two implant connection systems: a 3D finite element study. J Prosthet Dent 2019;122:474.e1-e8.
  31. Silva GC, Cornacchia TM, de Magalhaes CS, Bueno AC, Moreira AN. Biomechanical evaluation of screw-and cement-retained implant-supported prostheses: a nonlinear finite element analysis. J Prosthet Dent 2014;112:1479-88. https://doi.org/10.1016/j.prosdent.2014.06.010
  32. Quaresma SET, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol 2008;34:1-6. https://doi.org/10.1563/1548-1336(2008)34[1:afeaot]2.0.co;2
  33. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63. https://doi.org/10.1067/mpr.2002.123817
  34. Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent 2014;112:340-8. https://doi.org/10.1016/j.prosdent.2013.10.016
  35. Inzana JA, Varga P, Windolf M. Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. J Biomech 2016;49:1836-44. https://doi.org/10.1016/j.jbiomech.2016.04.021
  36. Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2007;22:301-9.
  37. Chang CL, Chen CS, Huang CH, Hsu ML. Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 2012;34:999-1008. https://doi.org/10.1016/j.medengphy.2012.06.004
  38. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent 20011;86:24-32. https://doi.org/10.1067/mpr.2001.116230
  39. Lang LA, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent 2003;90:539-46. https://doi.org/10.1016/j.prosdent.2003.09.012

Cited by

  1. Secondary Dentin Formation Mechanism: The Effect of Attrition vol.18, pp.19, 2020, https://doi.org/10.3390/ijerph18199961