DOI QR코드

DOI QR Code

Study on the Stability of Biotin-containing Nano-liposome

바이오틴 함유 나노리포좀의 안정성에 관한 연구

  • Yang, Seong Jun (Department of Chemistry and Cosmetics, College of National Science, Jeju National University) ;
  • Kim, Tae Yang (Songpa R&D Center, Coreana Cosmetic CO., Ltd.) ;
  • Lee, Chun Mong (Songpa R&D Center, Coreana Cosmetic CO., Ltd.) ;
  • Lee, Kwang Sik (Songpa R&D Center, Coreana Cosmetic CO., Ltd.) ;
  • Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
  • 양성준 (제주대학교 화학.코스메틱학과) ;
  • 김태양 ((주)코리아나화장품 송파기술연구원) ;
  • 이춘몽 ((주)코리아나화장품 송파기술연구원) ;
  • 이광식 ((주)코리아나화장품 송파기술연구원) ;
  • 윤경섭 (제주대학교 화학.코스메틱학과)
  • Received : 2020.04.02
  • Accepted : 2020.05.27
  • Published : 2020.06.30

Abstract

This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.

본 연구는 용해도가 낮은 수용성 활성물질인 바이오틴(biotin)의 안정화 및 용해도 증가를 목적으로 나노리포좀을 활용하였다. 이번 실험을 통해 바이오틴 나노리포좀의 안정성에 pH가 큰 영향을 준다는 사실을 확인할 수 있었으며, pH 상승이 바이오틴 활성에 튼 영향을 미치지 않음을 확인하였다. 또한 제타사이저(zetasizer)로 입자크기, 제타전위(zeta potential) 및 다분산지수(polydispersity index)를 측정하여 안정성을 평가하였다. 입자크기는 평균 100 ~ 250 nm, 제타전위 -80 ~ -30 mV로 나노리포좀 제조가 가능함을 확인하였다. 바이오틴 나노리포좀 내의 바이오틴 캡슐화율(capsulation efficiency)을 측정하기 위해 dialysis membrane method (DMM)를 이용하여 평가하였으며, 이를 통해 알지닌을 첨가시킨 바이오틴 나노리포좀이 일반 바이오틴 나노리포좀보다 캡슐화율이 5 배 높은 것으로 측정되었다. 바이오틴 나노리포좀의 경피흡수율을 측정하기 위해 in vitro franz diffusion cell method를 통해 확인하였으며, cryogenic transmission electron microscopy (cryo - TEM)을 통해 바이오틴 나노리포좀이 잘 형성되었는지 확인하였다. 본 논문을 통하여 모발건강과 밀접한 관계가 있는 것으로 소개된 바이오틴을 약물전달체(drug delivery carrier)인 나노리포좀에 캡슐화시켜 기존의 낮은 용해도 및 석출되는 문제를 보완한 바이오틴 나노리포좀을 만들 수 있음을 확인하였다.

Keywords

References

  1. A. Claude, J. Dominique, and D. Roland, Biotin metabolism in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 17 (2000). https://doi.org/10.1146/annurev.arplant.51.1.17
  2. S. A. Harris, D. E. Wolf, R. Mozingo, R. C. Anderson, G. E. Arth, N. R. Easton, D. Heyl, A. N. Wilson, and K. Folkers, Biotin. II. synthesis of biotin, J. Am. Chem. Soc., 66(10), 1756 (1944). https://doi.org/10.1021/ja01238a041
  3. L. J. Goldberg and Y. Lenzy, Nutrition and hair, Clin. Dermatol., 28(4), 412 (2010). https://doi.org/10.1016/j.clindermatol.2010.03.038
  4. R. M. Trueb, Serum biotin levels in women complaining of hair loss, Int J Trichology, 8(2), 73 (2016). https://doi.org/10.4103/0974-7753.188040
  5. D. P. Patel, S. M. Swink, and L. Catelo-Sccio, A review of the use of biotin for hair loss, Skin Appendage Disord., 3(3), 166 (2017). https://doi.org/10.1159/000462981
  6. J. M. Yoo, S. Y. Kim, E. Cho, E. Cho, S. Choi, Y. Jeong, B. Ha, and H. J. Chae, Stabilization of astaxanthin using nanoliposome, KSBB J., 25(2), 130 (2010).
  7. E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipid-based vesicles as transdermal delivery system, KIC News, 13(4), 24 (2010).
  8. E. J. Yang, Master's Thesis Dissertation, Konkuk Univ., Seoul, Korea (2003).
  9. E. Mayhew, R. Lazo, W. J. Vail, J. King, and A. M. Green, Characterization of liposomes prepared using a microemulsifier, Biochim. Biophys. Acta., 775(2), 169 (1984). https://doi.org/10.1016/0005-2736(84)90167-6
  10. M. S. Park, J. K. Park, G. W. Lee, M. K. Baek, and U. K. Jee, Preparation and evaluation of aclarubicin liposome using microfluidizer, Yakhak Hoeji, 42(3), 265 (1998).
  11. D. Carugo, E. Bottaro, J. Owen, E. Strider, and C. Nastruzzi, Liposome production by microfluidics: potential and limiting factors, Sci. Rep., 6, 1 (2016). https://doi.org/10.1038/s41598-016-0001-8
  12. A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, and H. Fessi, Preparation, characterization and applications of liposomes: state of the art, J. Colloid Sci. Biotechnol., 1(2), 147 (2012). https://doi.org/10.1166/jcsb.2012.1020
  13. D. H. Bae and J. S. Shin, Silicone nanoemulsion stablized with hydrogenated lecithin, J. Korean. Ind. Eng. Chem., 11(5), 522 (2000).
  14. Y. Ebato, Y. Kato, H. Onishi, T. Nagai, and Y. Machida, In vivo efficacy of a novel double liposome as an oral dosage form of salmon calcitonin, Drug Dev. Res., 58(3), 253 (2003). https://doi.org/10.1002/ddr.10162
  15. G. J. Grant, Y. Barenholz, E. M. Bolotin, M. Bansinath, H. Turndorf, B. Piskoun, and E. M. Davidson, A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia, Anesthesiology, 101(1), 133 (2004). https://doi.org/10.1097/00000542-200407000-00021
  16. K. Katayama, Y. Kato, H. Onishi, T. Nagai, and Y. Machida, Double liposomes: hypoglycemic effects of liposomal insulin on normal rats drug, Dev Ind Pharm, 29(7), 725 (2003). https://doi.org/10.1081/DDC-120021771
  17. J. G. Duman, N. J. Pathak, M. S. Ladinsky, K. L. Mcdonald, and J. G. Forte, Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells, J. Cell. Sci., 115(6), 1251 (2002). https://doi.org/10.1242/jcs.115.6.1251
  18. J. Lee, G. Y. Chi, and J. Lim, Effect of fatty acid on the membrane fluidity of liposomes, Appl. Chem. Eng., 28(2), 177 (2017). https://doi.org/10.14478/ace.2016.1124
  19. E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur J Pharm Biopharm, 60(1), 91 (2005). https://doi.org/10.1016/j.ejpb.2004.11.009
  20. Y. P. Patil and S. Jadhav, Novel methods for liposome preparation, Chem. Phys. Lipids., 177, 8 (2013).
  21. X. R. Shao, X. Q. Wei, S. Zhang, N. Fu, Y. F. Lin, X. X. Cai, and Q. Peng, Effects of microenvironmental pH of liposome on chemical stability of loaded drug, Nanoscale Res. Lett., 12(1), 504 (2017). https://doi.org/10.1186/s11671-017-2256-9