DOI QR코드

DOI QR Code

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Shan, Huagang (Shaoxing Traffic Investment Group Co., Ltd.) ;
  • Wu, Yang (School of Civil Engineering, Guangzhou University) ;
  • Meng, Qingshan (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Zhu, Changqi (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • Received : 2019.11.21
  • Accepted : 2020.06.17
  • Published : 2020.07.25

Abstract

Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Keywords

Acknowledgement

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Science (No.XDA13010203), and the National Natural Science Foundation of China (Nos.41572297, 41877267, 41372318 & 51908153), Guangzhou City Technology and Science Program (201904010278).

References

  1. Alshibli, K.A. and Akbas, I.S (2003), "Strain localization in clay: Plane strain versus triaxial loading conditions", Geotech. Geol. Eng., 129(6), 45-55. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483).
  2. Ando, E., Dijkstra, J., Roubin, E., Dano, C. and Boller, E. (2019), "A peek into the origin of creep in sand", Granul. Matter, 21(11), 1-8. https://doi.org/10.1007/s10035-018-0863-5.
  3. Arenaldi-Perisic, G., Ovalle, C. and Barrios, A. (2019), "Compressibility and creep of a diatomaceous soil", Eng. Geol., 258, 105145. https://doi.org/10.1016/j.enggeo.2019.105145.
  4. Beemer, R., Sadekov, A., Lebrec, U., Shaw, J., Bandini, A. and Cassidy, M. (2019), "Impact of biology on particle crushing in offshore calcareous sediments", Proceedings of the Geo-Congress 2019, 8th International Conference on Case Histories in Geotechnical Engineering, Philadelphia, Pennsylvania, U.S.A., March.
  5. Biarez, J. and Hither, P. (1994), Elementary Mechanics of Soil Behaviour, A.A. Balema Publisher, Rotterdam, The Netherlands.
  6. Billam, J. (1971), "Some aspects of the behaviour of granular materials at high pressures. Stress-strain behaviour of soils", Proceedings of the Roscoe Memorial Symposium, Cambridge, U.K., March.
  7. Bishop, A.W. (1966), "Strength of soils as engineering materials", Geotechnique, 16(2), 89-130. https://doi.org/10.1680/geot.1966.16.2.91.
  8. Cantor, D., Emilien A., Sornay, P. and Radjai, F. (2018), "Rheology and structure of polydisperse three-dimensional packings of spheres", Phys. Rev. E., 98(5), 052910. https://doi.org/10.1103/PhysRevE.98.052910.
  9. Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
  10. Coop, M.R. (1990), "The mechanics of uncemented carbonate sands", Geotechnique, 40(4), 607-626. https://doi.org/10.1680/geot.1990.40.4.607.
  11. Coop, M.R., Sorensen, K.K., Freitas, T.B. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-164. https://doi.org/10.1680/geot.2004.54.3.157.
  12. Daouadji, A., Hicher, P.Y. and Rahma, A. (2001), "Modelling grain breakage influence on mechanical behaviour of granular media", Eur. J. Mech. A Solid, 20, 113-137. https://doi.org/10.1016/S0997-7538(00)01130-X.
  13. Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Div., 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458
  14. Frossard, E., Hu, W., Dano, C. and Hicher, P.Y. (2012), "Rockfill shear strength evaluation: A rational method based on size effects", Geotechnique, 62(5), 415-428. https://doi.org/10.1680/geot.10.P.079.
  15. Golightly, C.R. and Hyde, A.F.L. (1988), "Some fundamental properties of carbonate soils", Proceedings of the International Conference on End Bearing Capacity on Calcareous Sediments, Perth, Australia.
  16. Hanley, K.J., O'Sullivan, C. and Huang, X. (2015), "Particle-scale mechanics of sand crushing in compression and shearing using DEM", Soils Found., 55(5), 1100-1112. https://doi.org/10.1016/j.sandf.2015.09.011.
  17. Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
  18. Hyodo, M., Wu, Y., Aramaki, N. and Nakata, Y. (2017a), "Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures", Can. Geotech. J., 54(2), 207-218. https://doi.org/10.1139/cgj-2016-0212.
  19. Hyodo, M., Wu, Y., Kajiyama, H., Nakata, Y. and Yoshimoto, N. (2017c), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127.
  20. Hyodo, M., Wu, Y., Nakashima, K., Kajiyama, S. and Nakata, Y. (2017b), "Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments", J. Geophys. Res. Solid Earth, 122(10), 1-14. https://doi.org/10.1002/2017JB014154.
  21. Kajiyama, S., Hyodo, M., Nakata, Y., Yoshimoto, N., Wu, Y. and Kato, A. (2017a), "Shear behaviour of methane hydrate bearing sand with various particle characteristics and fines", Soils Found., 57(2), 176-193. https://doi.org/10.1016/j.sandf.2017.03.002.
  22. Kajiyama, S., Wu, Y., Hyodo, M., Nakata, Y. and Nakashima, K. (2017b) "Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles", J. Nat. Gas Sci. Eng., 45, 96-107. https://doi.org/10.1016/j.jngse.2017.05.008.
  23. Karatza, Z., Ando, E., Papanicolopulos, S.A., Viggiani, G. and Ooi, J.Y. (2019), "Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography", Granul. Matter, 21(3), 44. https://doi.org/10.1007/s10035-019-0898-2.
  24. Lade, P.V. and Karimpour, H. (2010), "Static fatigue controls particle crushing and time effects in granular materials", Soils Found., 50(5), 573-583. https://doi.org/10.3208/sandf.50.573.
  25. Lade, P.V., Yamamuro, J.A. and Bopp, P.A. (1996), "Significance of particle crushing in granular materials", J. Geotech. Geoenviron. Eng., 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
  26. Lee, K.L. and Farhoomand, I. (1967), "Compressibility and crushing of granular soil in anisotropic triaxial compression", Can. Geotech. J., 4(1), 68-86. https://doi.org/10.1139/t67-012.
  27. Lehane, B.M. and Liu, Q.B. (2013), "Measurement of shearing characteristics of granular materials at low stress levels in a shear box", Geotech. Geol. Eng., 31(1), 329-336. https://doi.org/10.1007/s10706-012-9571-9.
  28. Linero, S., Azema, E., Estrada, N., Fityus, S., Simmons, J. and Lizcano, A. (2019), "Impact of grading on steady-state strength", Geotech. Lett., 9(4), 328-333. https://doi.org/10.1680/jgele.18.00216.
  29. Liu, C.Q. and Wang, R. (2002), "Effect of particle crushing on mechanical properties of calcareous soil", Rock Soil Mech., (S1), 13-16.
  30. Lv, Y., Li, F., Liu Y, Fan, P. and Wang, M. (2016), "Comparative study of coral sand and silica sand in creep under general stress states", Can. Geotech. J., 54(11), 1601-1611. https://doi.org/10.1139/cgj-2016-0295.
  31. Ma, L., Li, Z., Wang, M., Wei, H. and Fan, P. (2019), "Effects of size and loading rate on the mechanical properties of single coral particles", Powder Technol., 342, 961-971. https://doi.org/10.1016/j.powtec.2018.10.037.
  32. Ma, L., Wu, J., Wang, M., Dong, L. and Wei, H. (2020), "Dynamic compressive properties of dry and saturated coral rocks at high strain rates", Eng. Geol., 272, 105615. https://doi.org/10.1016/j.enggeo.2020.105615.
  33. Marachi, N.D., Chan, C.K., Seed, H.B. and Duncan, J.M. (1969), "Strength and deformation characteristics of rockfills materials", Report No. TE-69-5, University of California, Berkeley, California, U.S.A.
  34. Marsal, R.J. (1967), "Large scale testing of rockfill materials", J. Soil Mech. Found. Div., 93(2), 27-43. https://doi.org/10.1680/geot.2001.51.2.173.
  35. Marsal, R.J. (1973), Mechanical Properties of Rockfill Dams, Casagrande Volumen, Wiley, New York, U.S.A., 454.
  36. McDowell, G.R. and Daniell, C.M. (2001), "Fractal compression of soil". Geotechnique, 51(2), 173-176. https://doi.org/10.3208/sandf.41.69.
  37. McDowell, G.R., Bolton, M. and Robertson, D. (1996), "The fractal crushing of granular materials", J. Mech. Phys. Solids, 44(12), 2079-2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
  38. Meng, K., Cui, C. and Li, H. (2020), "An ontology framework for pile integrity evaluation based on analytical methodology", IEEE Access, 8, 72158-72168. https://doi.org/10.1109/ACCESS.2020.2986229.
  39. Miura, N. and O-Hara, S. (1979), "Particle-crushing of a decomposed granite soil under shear stresses", Soils Found., 19(3), l-14. https://doi.org/10.3208/sandf1972.19.3_1.
  40. Mun, W. and Mccartney, J.S. (2017), "Roles of particle breakage and drainage in the isotropic compression of sand to high pressures", J. Geotech. Geoenviron. Eng., 143(10), 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
  41. Nanda, S., Sivakumar, V., Donohue, S. and Graham, S. (2018), "Small-strain behaviour and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading", Can. Geotech. J., 55(7), 979-987. https://doi.org/10.1139/cgj-2016-0522.
  42. Oldecop, L.A. and Alonso, E.E. (2003), "Suction effects on rockfill compressibility", Geotechnique, 53(2), 289-292. https://doi.org/10.1680/geot.2003.53.2.289.
  43. Ovalle, C. and Dano, C. (2020), "Effects of particle size-strength and size-shape correlations on parallel grading scaling", Geotech. Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00095.
  44. Raisianzadeh, J., Mirghasemi, A.A. and Mohammadi, S. (2018), "2D simulation of breakage of angular particles using combined DEM and XFEM", Powder Technol., 336, 282-297. https://doi.org/10.1016/j.powtec.2018.06.006.
  45. Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159, 98-105. https://doi.org/10.1016/j.enggeo.2013.03.005.
  46. Shire, T., O'Sullivan, C. and Hanley, K.J. (2016), "The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials", Granul. Matter, 18(3), 52. https://doi.org/10.1007/s10035-016-0654-9.
  47. GB/T 50123 (1999), Standard for Soil Test Method, GB/T 50123-1999.
  48. Valent, P.J., Altschaeffl, A.G. and Lee, H.J. (1982), Geotechnical properties of two calcareous Oozes. In Geotechnical Properties, Behavior, and Performance of Calcareous Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A., 79-96.
  49. Verdugo, R. and De la Hoz, K. (2006), "Strength and stiffness of coarse granular soils", Proceedings of the Geotechnical Symposium in Roma, Rome, Italy, March.
  50. Voivret, C., Radjai, F., Delenne, J.Y. and El Youssoufi, M.S. (2007), "Space-filling properties of polydisperse granular media", Phys. Rev. Lett., 76(2), 021301. https://doi.org/10.1103/PhysRevE.76.021301.
  51. Wang, W.W. and Coop, M.R. (2016), "An investigation of breakage behaviour of single sand particles using a high-speed microscope camera", Geotechnique, 66(12), 984-998. https://doi.org/10.1680/jgeot.15.P.247.
  52. Wang, X., Cui, J., Wu, Y., Zhu, C. and Wang, X. (2020), "Mechanical properties of calcareous silts in a hydraulic fill island-reef", Mar. Georesour. Geotechnol., 1-14. https://doi.org/10.1080/1064119X.2020.1748775.
  53. Wang, X.Z., Jiao, Y.Y., Wang, R., Hu, M.M., Meng, Q.S. and Tan F.Y. (2011), "Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea", Eng. Geol., 120, 40-47. https://doi.org/10.1016/j.enggeo.2011.03.011.
  54. Wang, X.Z., Wang, X., Jin, Z.C., Meng, Q.S., Zhu, C.Q. and Wang, R. (2017b), "Shear characteristics of calcareous gravelly soil", Bull. Eng. Geol. Environ., 76(2), 561-573. https://doi.org/10.1007/s10064-016-0978-z.
  55. Wang, X.Z., Wang, X., Jin, Z.C., Zhu, C.Q., Wang, R. and Meng, Q.S. (2017a) "Investigation of engineering characteristics of calcareous soils from fringing reef", Ocean Eng., 134, 77-86. https://doi.org/10.1016/j.oceaneng.2017.02.019.
  56. Wang, X.Z., Weng, Y., Wei, H., Meng, Q. and Hu M. (2019), "Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea", Eng. Geol., 261, 105274. https://doi.org/10.1016/j.enggeo.2019.105274.
  57. Wang, Z.C. and Wong, R.C.K. (2010), "Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses", Geomech. Eng., 2(4), 303-319. https://doi.org/10.12989/gae.2010.2.4.303.
  58. Wang, Z.C., Wong, R.C.K. and Qiao, L.P. (2011), "Investigation on relations between grain crushing amount and void ratio change of granular materials in one-dimensional compression and creep tests", J. Rock Mech. Geotech. Eng., 3(Sup), 415-420. https://doi.org/10.3724/SP.J.1235.2011.00415.
  59. Winter, M.J., Hyodo, M., Wu, Y., Yoshimoto, N., Hasan, M.B. and Matsui, K. (2017), "Influences of particle characteristic and compaction degree on the shear response of clinker ash", Eng. Geol., 230, 32-45. https://doi.org/10.1016/j.enggeo.2017.09.019.
  60. Wu, Y., Hyodo, M. and Aramaki, N. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/gae.2018.14.1.001.
  61. Wu, Y., Hyodo, M. and Cui, J. (2020b), "On the critical state characteristics of methane hydrate-bearing sediments", Mar. Petrol. Geol., 116(3), 104342. https://doi.org/10.1016/j.marpetgeo.2020.104342.
  62. Wu, Y., Li, N., Hyodo, M., Gu, M., Cui, J. and Spencer, B.F. (2019), "Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space", Int. J. Hydrogen Energ., 44, 26698-26710. https://doi.org/10.1016/j.ijhydene.2019.08.119.
  63. Wu, Y., Yamamoto, H. and Yao, Y. (2013), "Numerical study on bearing behavior of pile considering sand particle crushing", Geomech. Eng., 5(3), 241-261. https://doi.org/10.12989/gae.2013.5.3.241.
  64. Wu, Y., Yamamoto, H., Cui, J., and Cheng, H. (2020a), "Influence of load mode on particle crushing characteristics of silica sand at high stresses", Int. J. Geomech., 20(3), 04019194. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600.
  65. Wu, Y., Yoshimoto, N., Hyodo, M. and Nakata, Y. (2014), "Evaluation of crushing stress at critical state of granulated coal ash in triaxial test," Geotech. Lett., 4, 337-342. https://doi.org/10.1680/geolett.14.00066.
  66. Xiao, Y., Long, L., Evans, M., Zhou, M., Liu, H. and Stuedlein, A. (2019), "Effect of particle shape on stress-dilatancy responses of medium-dense sands", J. Geotech. Geoenviron. Eng., 145(2), 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
  67. Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y. and Zheng, Y. (2017), "Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process", Acta. Geotech., 12(5), 1177-1184. https://doi.org/10.1007/s11440-017-0580-y.
  68. Yamamuro, J.A. and Lade, P.V. (1996), "Drained sand behavior in axisymmetric tests at high pressures", J. Geotech. Eng., 122(2), 109-119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109).
  69. Yang, J. and Luo, X.D. (2015), "Exploring the relationship between critical state and particle shape for granular materials", J. Mech. Phys. Solids, 84, 196-213. https://doi.org/10.1016/j.jmps.2015.08.001.
  70. Yin, Z.Y., Hicher, P.Y., Dano, C. and Jin, Y.F. (2017), "Modeling mechanical behavior of very coarse granular materials", J. Eng. Mech., 143(1), C4016006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001059.
  71. Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behaviour of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.
  72. Yu, F.W. (2017), "Particle breakage and the critical state of sands", Geotechnique, 68(8), 713-719. https://doi.org/10.1016/j.sandf.2014.04.016.
  73. Yu, F.W. (2019), "Influence of particle breakage on behavior of coral sands in triaxial tests", Int. J. Geomech., 19(12), 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
  74. Zhang, J.M. (2004), "Study on the basic mechanical properties of calcareous sand and the impact of particle breakage", Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China.
  75. Zhu, C.Q., Liu, H.F. and Zhou, B. (2016), "Micro-structures and the basic engineering properties of beach calcarenites in South China Sea", Ocean Eng., 114, 224-235. https://doi.org/10.1016/j.oceaneng.2016.01.009.