Acknowledgement
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Science (No.XDA13010203), and the National Natural Science Foundation of China (Nos.41572297, 41877267, 41372318 & 51908153), Guangzhou City Technology and Science Program (201904010278).
References
- Alshibli, K.A. and Akbas, I.S (2003), "Strain localization in clay: Plane strain versus triaxial loading conditions", Geotech. Geol. Eng., 129(6), 45-55. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483).
- Ando, E., Dijkstra, J., Roubin, E., Dano, C. and Boller, E. (2019), "A peek into the origin of creep in sand", Granul. Matter, 21(11), 1-8. https://doi.org/10.1007/s10035-018-0863-5.
- Arenaldi-Perisic, G., Ovalle, C. and Barrios, A. (2019), "Compressibility and creep of a diatomaceous soil", Eng. Geol., 258, 105145. https://doi.org/10.1016/j.enggeo.2019.105145.
- Beemer, R., Sadekov, A., Lebrec, U., Shaw, J., Bandini, A. and Cassidy, M. (2019), "Impact of biology on particle crushing in offshore calcareous sediments", Proceedings of the Geo-Congress 2019, 8th International Conference on Case Histories in Geotechnical Engineering, Philadelphia, Pennsylvania, U.S.A., March.
- Biarez, J. and Hither, P. (1994), Elementary Mechanics of Soil Behaviour, A.A. Balema Publisher, Rotterdam, The Netherlands.
- Billam, J. (1971), "Some aspects of the behaviour of granular materials at high pressures. Stress-strain behaviour of soils", Proceedings of the Roscoe Memorial Symposium, Cambridge, U.K., March.
- Bishop, A.W. (1966), "Strength of soils as engineering materials", Geotechnique, 16(2), 89-130. https://doi.org/10.1680/geot.1966.16.2.91.
- Cantor, D., Emilien A., Sornay, P. and Radjai, F. (2018), "Rheology and structure of polydisperse three-dimensional packings of spheres", Phys. Rev. E., 98(5), 052910. https://doi.org/10.1103/PhysRevE.98.052910.
- Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
- Coop, M.R. (1990), "The mechanics of uncemented carbonate sands", Geotechnique, 40(4), 607-626. https://doi.org/10.1680/geot.1990.40.4.607.
- Coop, M.R., Sorensen, K.K., Freitas, T.B. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-164. https://doi.org/10.1680/geot.2004.54.3.157.
- Daouadji, A., Hicher, P.Y. and Rahma, A. (2001), "Modelling grain breakage influence on mechanical behaviour of granular media", Eur. J. Mech. A Solid, 20, 113-137. https://doi.org/10.1016/S0997-7538(00)01130-X.
- Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Div., 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458
- Frossard, E., Hu, W., Dano, C. and Hicher, P.Y. (2012), "Rockfill shear strength evaluation: A rational method based on size effects", Geotechnique, 62(5), 415-428. https://doi.org/10.1680/geot.10.P.079.
- Golightly, C.R. and Hyde, A.F.L. (1988), "Some fundamental properties of carbonate soils", Proceedings of the International Conference on End Bearing Capacity on Calcareous Sediments, Perth, Australia.
- Hanley, K.J., O'Sullivan, C. and Huang, X. (2015), "Particle-scale mechanics of sand crushing in compression and shearing using DEM", Soils Found., 55(5), 1100-1112. https://doi.org/10.1016/j.sandf.2015.09.011.
- Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
- Hyodo, M., Wu, Y., Aramaki, N. and Nakata, Y. (2017a), "Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures", Can. Geotech. J., 54(2), 207-218. https://doi.org/10.1139/cgj-2016-0212.
- Hyodo, M., Wu, Y., Kajiyama, H., Nakata, Y. and Yoshimoto, N. (2017c), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127.
- Hyodo, M., Wu, Y., Nakashima, K., Kajiyama, S. and Nakata, Y. (2017b), "Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments", J. Geophys. Res. Solid Earth, 122(10), 1-14. https://doi.org/10.1002/2017JB014154.
- Kajiyama, S., Hyodo, M., Nakata, Y., Yoshimoto, N., Wu, Y. and Kato, A. (2017a), "Shear behaviour of methane hydrate bearing sand with various particle characteristics and fines", Soils Found., 57(2), 176-193. https://doi.org/10.1016/j.sandf.2017.03.002.
- Kajiyama, S., Wu, Y., Hyodo, M., Nakata, Y. and Nakashima, K. (2017b) "Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles", J. Nat. Gas Sci. Eng., 45, 96-107. https://doi.org/10.1016/j.jngse.2017.05.008.
- Karatza, Z., Ando, E., Papanicolopulos, S.A., Viggiani, G. and Ooi, J.Y. (2019), "Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography", Granul. Matter, 21(3), 44. https://doi.org/10.1007/s10035-019-0898-2.
- Lade, P.V. and Karimpour, H. (2010), "Static fatigue controls particle crushing and time effects in granular materials", Soils Found., 50(5), 573-583. https://doi.org/10.3208/sandf.50.573.
- Lade, P.V., Yamamuro, J.A. and Bopp, P.A. (1996), "Significance of particle crushing in granular materials", J. Geotech. Geoenviron. Eng., 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
- Lee, K.L. and Farhoomand, I. (1967), "Compressibility and crushing of granular soil in anisotropic triaxial compression", Can. Geotech. J., 4(1), 68-86. https://doi.org/10.1139/t67-012.
- Lehane, B.M. and Liu, Q.B. (2013), "Measurement of shearing characteristics of granular materials at low stress levels in a shear box", Geotech. Geol. Eng., 31(1), 329-336. https://doi.org/10.1007/s10706-012-9571-9.
- Linero, S., Azema, E., Estrada, N., Fityus, S., Simmons, J. and Lizcano, A. (2019), "Impact of grading on steady-state strength", Geotech. Lett., 9(4), 328-333. https://doi.org/10.1680/jgele.18.00216.
- Liu, C.Q. and Wang, R. (2002), "Effect of particle crushing on mechanical properties of calcareous soil", Rock Soil Mech., (S1), 13-16.
- Lv, Y., Li, F., Liu Y, Fan, P. and Wang, M. (2016), "Comparative study of coral sand and silica sand in creep under general stress states", Can. Geotech. J., 54(11), 1601-1611. https://doi.org/10.1139/cgj-2016-0295.
- Ma, L., Li, Z., Wang, M., Wei, H. and Fan, P. (2019), "Effects of size and loading rate on the mechanical properties of single coral particles", Powder Technol., 342, 961-971. https://doi.org/10.1016/j.powtec.2018.10.037.
- Ma, L., Wu, J., Wang, M., Dong, L. and Wei, H. (2020), "Dynamic compressive properties of dry and saturated coral rocks at high strain rates", Eng. Geol., 272, 105615. https://doi.org/10.1016/j.enggeo.2020.105615.
- Marachi, N.D., Chan, C.K., Seed, H.B. and Duncan, J.M. (1969), "Strength and deformation characteristics of rockfills materials", Report No. TE-69-5, University of California, Berkeley, California, U.S.A.
- Marsal, R.J. (1967), "Large scale testing of rockfill materials", J. Soil Mech. Found. Div., 93(2), 27-43. https://doi.org/10.1680/geot.2001.51.2.173.
- Marsal, R.J. (1973), Mechanical Properties of Rockfill Dams, Casagrande Volumen, Wiley, New York, U.S.A., 454.
- McDowell, G.R. and Daniell, C.M. (2001), "Fractal compression of soil". Geotechnique, 51(2), 173-176. https://doi.org/10.3208/sandf.41.69.
- McDowell, G.R., Bolton, M. and Robertson, D. (1996), "The fractal crushing of granular materials", J. Mech. Phys. Solids, 44(12), 2079-2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
- Meng, K., Cui, C. and Li, H. (2020), "An ontology framework for pile integrity evaluation based on analytical methodology", IEEE Access, 8, 72158-72168. https://doi.org/10.1109/ACCESS.2020.2986229.
- Miura, N. and O-Hara, S. (1979), "Particle-crushing of a decomposed granite soil under shear stresses", Soils Found., 19(3), l-14. https://doi.org/10.3208/sandf1972.19.3_1.
- Mun, W. and Mccartney, J.S. (2017), "Roles of particle breakage and drainage in the isotropic compression of sand to high pressures", J. Geotech. Geoenviron. Eng., 143(10), 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
- Nanda, S., Sivakumar, V., Donohue, S. and Graham, S. (2018), "Small-strain behaviour and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading", Can. Geotech. J., 55(7), 979-987. https://doi.org/10.1139/cgj-2016-0522.
- Oldecop, L.A. and Alonso, E.E. (2003), "Suction effects on rockfill compressibility", Geotechnique, 53(2), 289-292. https://doi.org/10.1680/geot.2003.53.2.289.
- Ovalle, C. and Dano, C. (2020), "Effects of particle size-strength and size-shape correlations on parallel grading scaling", Geotech. Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00095.
- Raisianzadeh, J., Mirghasemi, A.A. and Mohammadi, S. (2018), "2D simulation of breakage of angular particles using combined DEM and XFEM", Powder Technol., 336, 282-297. https://doi.org/10.1016/j.powtec.2018.06.006.
- Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159, 98-105. https://doi.org/10.1016/j.enggeo.2013.03.005.
- Shire, T., O'Sullivan, C. and Hanley, K.J. (2016), "The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials", Granul. Matter, 18(3), 52. https://doi.org/10.1007/s10035-016-0654-9.
- GB/T 50123 (1999), Standard for Soil Test Method, GB/T 50123-1999.
- Valent, P.J., Altschaeffl, A.G. and Lee, H.J. (1982), Geotechnical properties of two calcareous Oozes. In Geotechnical Properties, Behavior, and Performance of Calcareous Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A., 79-96.
- Verdugo, R. and De la Hoz, K. (2006), "Strength and stiffness of coarse granular soils", Proceedings of the Geotechnical Symposium in Roma, Rome, Italy, March.
- Voivret, C., Radjai, F., Delenne, J.Y. and El Youssoufi, M.S. (2007), "Space-filling properties of polydisperse granular media", Phys. Rev. Lett., 76(2), 021301. https://doi.org/10.1103/PhysRevE.76.021301.
- Wang, W.W. and Coop, M.R. (2016), "An investigation of breakage behaviour of single sand particles using a high-speed microscope camera", Geotechnique, 66(12), 984-998. https://doi.org/10.1680/jgeot.15.P.247.
- Wang, X., Cui, J., Wu, Y., Zhu, C. and Wang, X. (2020), "Mechanical properties of calcareous silts in a hydraulic fill island-reef", Mar. Georesour. Geotechnol., 1-14. https://doi.org/10.1080/1064119X.2020.1748775.
- Wang, X.Z., Jiao, Y.Y., Wang, R., Hu, M.M., Meng, Q.S. and Tan F.Y. (2011), "Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea", Eng. Geol., 120, 40-47. https://doi.org/10.1016/j.enggeo.2011.03.011.
- Wang, X.Z., Wang, X., Jin, Z.C., Meng, Q.S., Zhu, C.Q. and Wang, R. (2017b), "Shear characteristics of calcareous gravelly soil", Bull. Eng. Geol. Environ., 76(2), 561-573. https://doi.org/10.1007/s10064-016-0978-z.
- Wang, X.Z., Wang, X., Jin, Z.C., Zhu, C.Q., Wang, R. and Meng, Q.S. (2017a) "Investigation of engineering characteristics of calcareous soils from fringing reef", Ocean Eng., 134, 77-86. https://doi.org/10.1016/j.oceaneng.2017.02.019.
- Wang, X.Z., Weng, Y., Wei, H., Meng, Q. and Hu M. (2019), "Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea", Eng. Geol., 261, 105274. https://doi.org/10.1016/j.enggeo.2019.105274.
- Wang, Z.C. and Wong, R.C.K. (2010), "Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses", Geomech. Eng., 2(4), 303-319. https://doi.org/10.12989/gae.2010.2.4.303.
- Wang, Z.C., Wong, R.C.K. and Qiao, L.P. (2011), "Investigation on relations between grain crushing amount and void ratio change of granular materials in one-dimensional compression and creep tests", J. Rock Mech. Geotech. Eng., 3(Sup), 415-420. https://doi.org/10.3724/SP.J.1235.2011.00415.
- Winter, M.J., Hyodo, M., Wu, Y., Yoshimoto, N., Hasan, M.B. and Matsui, K. (2017), "Influences of particle characteristic and compaction degree on the shear response of clinker ash", Eng. Geol., 230, 32-45. https://doi.org/10.1016/j.enggeo.2017.09.019.
- Wu, Y., Hyodo, M. and Aramaki, N. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/gae.2018.14.1.001.
- Wu, Y., Hyodo, M. and Cui, J. (2020b), "On the critical state characteristics of methane hydrate-bearing sediments", Mar. Petrol. Geol., 116(3), 104342. https://doi.org/10.1016/j.marpetgeo.2020.104342.
- Wu, Y., Li, N., Hyodo, M., Gu, M., Cui, J. and Spencer, B.F. (2019), "Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space", Int. J. Hydrogen Energ., 44, 26698-26710. https://doi.org/10.1016/j.ijhydene.2019.08.119.
- Wu, Y., Yamamoto, H. and Yao, Y. (2013), "Numerical study on bearing behavior of pile considering sand particle crushing", Geomech. Eng., 5(3), 241-261. https://doi.org/10.12989/gae.2013.5.3.241.
- Wu, Y., Yamamoto, H., Cui, J., and Cheng, H. (2020a), "Influence of load mode on particle crushing characteristics of silica sand at high stresses", Int. J. Geomech., 20(3), 04019194. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600.
- Wu, Y., Yoshimoto, N., Hyodo, M. and Nakata, Y. (2014), "Evaluation of crushing stress at critical state of granulated coal ash in triaxial test," Geotech. Lett., 4, 337-342. https://doi.org/10.1680/geolett.14.00066.
- Xiao, Y., Long, L., Evans, M., Zhou, M., Liu, H. and Stuedlein, A. (2019), "Effect of particle shape on stress-dilatancy responses of medium-dense sands", J. Geotech. Geoenviron. Eng., 145(2), 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
- Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y. and Zheng, Y. (2017), "Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process", Acta. Geotech., 12(5), 1177-1184. https://doi.org/10.1007/s11440-017-0580-y.
- Yamamuro, J.A. and Lade, P.V. (1996), "Drained sand behavior in axisymmetric tests at high pressures", J. Geotech. Eng., 122(2), 109-119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109).
- Yang, J. and Luo, X.D. (2015), "Exploring the relationship between critical state and particle shape for granular materials", J. Mech. Phys. Solids, 84, 196-213. https://doi.org/10.1016/j.jmps.2015.08.001.
- Yin, Z.Y., Hicher, P.Y., Dano, C. and Jin, Y.F. (2017), "Modeling mechanical behavior of very coarse granular materials", J. Eng. Mech., 143(1), C4016006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001059.
- Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behaviour of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.
- Yu, F.W. (2017), "Particle breakage and the critical state of sands", Geotechnique, 68(8), 713-719. https://doi.org/10.1016/j.sandf.2014.04.016.
- Yu, F.W. (2019), "Influence of particle breakage on behavior of coral sands in triaxial tests", Int. J. Geomech., 19(12), 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
- Zhang, J.M. (2004), "Study on the basic mechanical properties of calcareous sand and the impact of particle breakage", Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China.
- Zhu, C.Q., Liu, H.F. and Zhou, B. (2016), "Micro-structures and the basic engineering properties of beach calcarenites in South China Sea", Ocean Eng., 114, 224-235. https://doi.org/10.1016/j.oceaneng.2016.01.009.