DOI QR코드

DOI QR Code

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Benrahou, Kouider Halim (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Kaci, Abdelhakim (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Houari, Mohammed Sid Ahmed (Faculty of Science and Technology, Mascara University) ;
  • Bourada, Fouad (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Bousahla, Abdelmoumen Anis (Multi-scale Modeling and Simulation Laboratory, University of Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Adda Bedia, E.A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (Department of Civil Engineering, Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
  • Received : 2020.04.02
  • Accepted : 2020.06.08
  • Published : 2020.07.25

Abstract

In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

Keywords

References

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: A micromechanical approach", Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  2. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  3. Adim, B., Daouadji, T.H. and Rabahi, A. (2016), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng., 8(2), 103-117. https://doi.org/10.1007/s40091-016-0109-x.
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  6. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  7. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  8. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  9. Avcar, M. (2014), "Free vibration analysis of beams considering different geometric characteristics and boundary conditions", Int. J. Mech. Appl., 4(3), 94-100. https://doi.org/10.5923/j.mechanics.20140403.03.
  10. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375.
  11. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  12. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  13. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1),71-90. https://doi.org/10.12989/cme.2019.1.1.071.
  14. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  15. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  16. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  17. Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pressure Vessels Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  18. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.
  19. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  20. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  21. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  22. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Walled Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  23. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136.
  24. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  25. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019b), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  26. Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. https://doi.org/10.12989/cme.2019.1.1.049.
  27. Ghabussi, A., Habibi, M., Arani, O.N., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, In Press. https://doi.org/10.1177/1077546320923930.
  28. Ghadimi, M.G. (2020), "Buckling of non-sway Euler composite frame with semi-rigid connection", Compos. Mater. Eng., 2(1), 13-24. https://doi.org/10.12989/cme.2020.2.1.013.
  29. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
  30. Ghugal, Y.M. and Sayyad, A.S. (2011), "Free vibration of thick orthotropic plates using trigonometric shear deformation theory", Lat. Amer. J. Solids Struct., 8(3), 229-243. https://doi.org/10.1590/s1679-78252011000300002.
  31. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  32. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179.
  33. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  34. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  35. Jothi Saravanan, T., Gopalakrishnan, N. and Karthick Hari, B. (2019), "Damage identification in structural elements through curvature mode shapes and nonlinear energy operator", Compos. Mater. Eng., 1(1), 33-48. https://doi.org/10.12989/cme.2019.1.1.033.
  36. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  37. Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878.
  38. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  39. Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  40. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  41. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
  42. Katariya, P.V. and Panda, S.K. (2019a), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44, 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  43. Katariya, P.V. and Panda, S.K. (2019b), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  44. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
  45. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  46. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircr. Eng. Aerosp. Technol., 90(6). https://doi.org/10.1108/AEAT-05-2016-0087.
  47. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2019), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 21(8), 2846-2869. https://doi.org/10.1177/1099636217728420.
  48. Khater, H.M., El Nagar, A.M., Ezzat, M. and Lottfy, M. (2020), "Fabrication of sustainable geopolymer mortar incorporating granite waste", Compos. Mater. Eng., 2(1), 1-12. https://doi.org/10.12989/cme.2020.2.1.001.
  49. Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl. Mech., https://doi.org/10.22059/JCAMECH.2020.296319.473.
  50. Kossakowski, P.G. and Uzarska, I. (2019), "Numerical modeling of an orthotropic RC slab band system using the Barcelona model", Adv. Comput. Des., 4(3), 211-221. https://doi.org/10.12989/acd.2019.4.3.211.
  51. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.
  52. Lee, N.J., Lai, G.S., Lau, W.J. and Ismail, A.F. (2020), "Effect of poly(ethylene glycol) on the properties of mixed matrix membranes for improved filtration of highly concentrated oily solution", Compos. Mater. Eng., 2(1), 43-51. https://doi.org/10.12989/cme.2020.2.1.043.
  53. Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Des., 4(3), 273-294. https://doi.org/10.12989/acd.2019.4.3.273.
  54. Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos. Part B Eng., 45(1), 1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022.
  55. Mehar, K. and Panda, S.K. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  56. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  57. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  58. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 240, 112064. https://doi.org/10.1016/j.compstruct.2019.03.002.
  59. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  60. Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
  61. Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Mohasel Afshari, B., Hamouda, A.M.S. and Rabby, S. (2019a), "Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency", Eur. Phys. J. Plus, 134(5). https://doi.org/10.1140/epjp/i2019-12540-3.
  62. Mirjavadi, S.S., Forsat, M., Nikookar, M., Barati, M.R. and Hamouda, A.M.S. (2019b), "Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets", Eur. Phys. J. Plus, 134, 508. https://doi.org/10.1140/epjp/i2019-12806-8.
  63. Mohamed, N., Mohamed A. Eltaher, M.A., Mohamed, S.A and Seddek. L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  64. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  65. Mousavi, S.M. and Tahani, M. (2012), "Analytical solution for bending of moderately thick radially functionally graded sector plates with general boundary conditions using multi-term extended Kantorovich method", Compos. Part B Eng., 43(3), 1405-1416. https://doi.org/10.1016/j.compositesb.2011.11.068.
  66. Nguyen, T.K. (2014), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
  67. Nikkhoo, A., Asili, S., Sadigh, S., Hajirasouliha, I. and Karegar, H. (2019), "A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses", Adv. Comput. Des., 4(3), 307-326. https://doi.org/10.12989/acd.2019.4.3.307.
  68. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisciplin. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  69. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math, 1, 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  70. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  71. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056.
  72. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  73. Rezaiee-Pajand, M. and Karimipour, A. (2020), "Two rectangular elements based on analytical functions", Adv. Comput. Des., 5(2), 147-175. https://doi.org/10.12989/acd.2020.5.2.147.
  74. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  75. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  76. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Walled Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  77. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  78. Sedighi, H.M. and Shirazi, K.H. (2013), "Vibrations of micro-beams actuated by an electric field via parameter expansion method", Acta Astronautica., 85, 19-24. https://doi.org/10.1016/j.actaastro.2012.11.014.
  79. Sedighi, H.M., Keivani, M. and Abadyan, M. (2015), "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B Eng., 83, 117-133. https://doi.org/10.1016/j.compositesb.2015.08.029.
  80. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  81. Shokravi, M. (2017), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12(2), 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
  82. Shokrieh, M.M. and Kondori, M.S. (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
  83. Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Adv. Comput. Des., 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
  84. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  85. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  86. Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.
  87. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650.
  88. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates - Analytical solutions", Eur. J. Mech. A Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.
  89. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math Modell., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  90. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  91. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  92. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
  93. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  94. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448.
  95. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.
  96. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.
  97. Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.

Cited by

  1. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  2. Impacts of PU Foam Stand-Off Layer on the Vibration Damping Performance of Stand-Off Free Layer Damping Cantilever Beams vol.2020, 2020, https://doi.org/10.1155/2020/8871562
  3. Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, 2020, https://doi.org/10.1155/2020/9236538
  4. A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations vol.22, pp.5, 2020, https://doi.org/10.12989/gae.2020.22.5.415
  5. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.265
  6. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  7. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/6672370
  8. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
  9. Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
  10. A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
  11. Analysis of the Vibration of the Ground Surface by Using the Layered Soil: Viscoelastic Euler Beam Model due to the Moving Load vol.2021, 2020, https://doi.org/10.1155/2021/6619197
  12. Influences of Two Calculation Methods about Dynamic Tension on Vibration Characteristics of Cable-Bridge Coupling Model vol.2021, 2020, https://doi.org/10.1155/2021/6681954
  13. Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2020, https://doi.org/10.12989/gae.2021.24.1.091
  14. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  15. Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation vol.24, pp.3, 2020, https://doi.org/10.12989/gae.2021.24.3.267
  16. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315
  17. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  18. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  19. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  20. Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.369
  21. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.055
  22. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation vol.26, 2021, https://doi.org/10.1016/j.csite.2021.101170
  23. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593