DOI QR코드

DOI QR Code

Recent Development in Performance Enhancement of PVDF-Nanopowder Composite-based Energy Harvesting Devices

나노 분말 복합체 형성을 통한 PVDF 기반 에너지 하베스팅 소자 성능 향상 기술 동향

  • Choi, Geon-Ju (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 최건주 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2020.06.08
  • Accepted : 2020.06.14
  • Published : 2020.06.28

Abstract

Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the ν-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.

Keywords

References

  1. Z. L. Wang: Sci. Am., 298 (2008) 82. https://doi.org/10.1038/scientificamerican0108-82
  2. S. Chu, Y. Cui and N. Liu: Nat. Mater., 16 (2017) 16. https://doi.org/10.1038/nmat4834
  3. H. Yoon, H. Ryu and S. Kim: Nano Energy, 51 (2018) 270. https://doi.org/10.1016/j.nanoen.2018.06.075
  4. I. Park: J. Korean Powder Metall. Inst., 24 (2017) 102. https://doi.org/10.4150/KPMI.2017.24.2.102
  5. F. Fan, Z. Tian and Z. L. Wang: Nano Energy, 1 (2012) 328. https://doi.org/10.1016/j.nanoen.2012.01.004
  6. Z. L. Wang: Faraday Discuss., 176 (2015) 447. https://doi.org/10.1039/c4fd00159a
  7. D. Zhang, W. Liu, R. Guo, K. Zhou and H. Luo: Adv. Sci., 5 (2018) 1700512. https://doi.org/10.1002/advs.201700512
  8. H. Luo, S. Chen, L. Liu, X. Zhou, C. Ma, W. Liu and D. Zhang: ACS Sustain. Chem. Eng., 7 (2018) 3145
  9. Q. Zhang, V. Bharti and G. Kavarnos: Encyclopedia of Smart Materials, (2002).
  10. J. Li, S. Chen, W. Liu, R. Fu, S. Tu, Y. Zhao, L. Dong, B. Yan and Y. Gu: J. Phys. Chem. C, 123 (2019) 11378. https://doi.org/10.1021/acs.jpcc.8b12410
  11. K. Shi, B. Sun, X. Huang and P. Jiang: Nano Energy, 52 (2018) 153. https://doi.org/10.1016/j.nanoen.2018.07.053
  12. N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S. C. Ray, C. Tsonos and T. Thundat: Nano Energy, 30 (2016) 470. https://doi.org/10.1016/j.nanoen.2016.10.040
  13. J. Im and I. Park: ACS Appl. Mater. Interfaces, 10 (2018) 25660. https://doi.org/10.1021/acsami.8b07621
  14. M. M. Alam, A. Sultana and D. Mandal: ACS Appl. Energy Mater., 1 (2018) 3103. https://doi.org/10.1021/acsaem.8b00216
  15. H. Yu, T. Huang, M. Lu, M. Mao, Q. Zhang and H. Wang: Nanotechnology, 24 (2013) 405401. https://doi.org/10.1088/0957-4484/24/40/405401
  16. G. Choi, S. Baek, S. Lee, F. Khan, J. H. Kim and I. Park: J. Alloys Compd., 797 (2019) 945. https://doi.org/10.1016/j.jallcom.2019.05.202
  17. H. Kim and I. Park: J. Phys. Chem. Solids, 117 (2018) 188. https://doi.org/10.1016/j.jpcs.2018.02.045
  18. S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H. Shin, S. Kim and J. H. Cho: Adv. Funct. Mater., 28 (2018) 1703778. https://doi.org/10.1002/adfm.201703778
  19. J. Fang, H. Niu, H. Wang, X. Wang and T. Lin: Energy Environ. Sci., 6 (2013) 2196. https://doi.org/10.1039/c3ee24230g
  20. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J. Zhu: Nanoscale, 5 (2013) 4015. https://doi.org/10.1039/c3nr33849e
  21. L. Tang, R. Ji, X. Li, K. S. Teng and S. P. Lau: J. Mater. Chem. C, 1 (2013) 4908. https://doi.org/10.1039/c3tc30877d
  22. P. Adhikary, A. Biswas and D. Mandal: Nanotechnology, 27 (2016) 495501. https://doi.org/10.1088/0957-4484/27/49/495501
  23. C. Harito, R. Porras, D. V. Bavykin and F. C. Walsh: J. Appl. Polym. Sci., 134 (2017).