DOI QR코드

DOI QR Code

ZnSe 나노분말 합성에 미치는 환원제와 첨가제의 영향

Influence of Reducing Agents and Additives on the Synthesis of ZnSe Nanoparticles

  • 백금지 (성신여자대학교 청정융합에너지공학과) ;
  • 이다경 (성신여자대학교 청정융합에너지공학과) ;
  • 이민서 (성신여자대학교 청정융합에너지공학과) ;
  • 송하연 (성신여자대학교 청정융합에너지공학과) ;
  • 홍현선 (성신여자대학교 청정융합에너지공학과)
  • Back, Geum Ji (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Lee, Da Gyeong (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Lee, Min Seo (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Song, Ha Yeon (Department of Environment & Energy Engineering, Sungshin Women's University) ;
  • Hong, Hyun Seon (Department of Environment & Energy Engineering, Sungshin Women's University)
  • 투고 : 2020.06.15
  • 심사 : 2020.06.24
  • 발행 : 2020.06.28

초록

Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV-vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.

키워드

참고문헌

  1. M. J. Son, H. S. Jung, Y. K. Lee, E. H. Koo and J. W. Bang: J. Korean Inst. Electr. Electron. Mater. Eng., 31 (2018) 443. https://doi.org/10.4313/JKEM.2018.31.7.443
  2. D. J. Norris, A. L. Efros and S. C. Erwin: Science, 319 (2008) 1776. https://doi.org/10.1126/science.1143802
  3. H. Hu and W. Zhang: Opt. Mater., 28 (2006) 536. https://doi.org/10.1016/j.optmat.2005.03.015
  4. K. Senthilkumar, T. Kalaivani, S. Kanagesan and V. Balasubramanian: J. Mater. Sci. Mater. Electron., 23 (2012) 2048. https://doi.org/10.1007/s10854-012-0701-1
  5. Y. G. Kim: Ceramist, 16 (2013) 42.
  6. H. S. Hong and M. S. Kim: Korean J. Mater. Res., 27 (2017) 459. https://doi.org/10.3740/MRSK.2017.27.9.459
  7. H. S. Hong, M. S. Kim, E. K. Byun and Y. L. Lee: J. Crystal Growth., 535 (2020) 125523. https://doi.org/10.1016/j.jcrysgro.2020.125523
  8. J. Zhu, Y. Koltypin and A. Gedanken: Chem. Mater., 12 (2000) 73. https://doi.org/10.1021/cm990380r
  9. L. S. Li, N. Pradhan, Y. Wang and X. Peng: Nano Lett., 4 (2004) 2261. https://doi.org/10.1021/nl048650e
  10. C. Mehta, G. S. S. Saini, J. M. Abbas and S. K. Tripathi: Appl. Surf. Sci., 256 (2009) 608. https://doi.org/10.1016/j.apsusc.2009.06.023
  11. Z. Chen, J. Chen, Q. Liang, D. Wu, Y. Zeng and B. Jiang: J. Lumin., 145 (2014) 569. https://doi.org/10.1016/j.jlumin.2013.07.071
  12. N. N. Dlamini, V. S. R. Rajasekhar Pullabhotla and N. Revaprasadu: J. Nat. Prod., 12 (2012) 2645.
  13. Y. Zheng, Z. Yang and J. Y. Ying: Adv. Mater., 19 (2007) 1475. https://doi.org/10.1002/adma.200601939
  14. C. Wang, X. Gao, Q. Ma and X. Su: J. Mater. Chem., 19 (2009) 7016. https://doi.org/10.1039/b909546b
  15. Z. Fang, Y. Li, H. Zhang, X. Zhong and L. Zhu: J. Phys. Chem. C, 113 (2009) 14145. https://doi.org/10.1021/jp903806b
  16. P. Shao, Q. Zhang, Y. Li and H. Wang: J. Mater. Chem., 21 (2011) 151. https://doi.org/10.1039/c0jm01878c
  17. G. Xue, W. Chao, N. Lu and S. Xingguang: J. Lumin., 131 (2011) 1300. https://doi.org/10.1016/j.jlumin.2011.03.012
  18. H. Qian, X. Qiu, L. Li and J. Ren: J. Phys. Chem. B, 110 (2006) 9034. https://doi.org/10.1021/jp0539324
  19. J. Zhang, Q. Chen, W. Zhang, S. Mei, L. He, J. Zhu, G. Chen and R. Guo: Appl. Surf. Sci., 351 (2015) 655. https://doi.org/10.1016/j.apsusc.2015.05.178
  20. A. R. Khezripour and D. Souri: Optik, 183 (2019) 294. https://doi.org/10.1016/j.ijleo.2019.02.121
  21. G. Y. Lan, Y. W. Lin, Y. F. Huanga and H. T. Chang: J. Mater. Chem., 17 (2007) 2661. https://doi.org/10.1039/b702469j
  22. P. Reiss: New J. Chem., 31 (2007) 1843. https://doi.org/10.1039/b712086a
  23. A. P. Hagen: Inorganic Reactions and Methods, The Formation of Bonds to Halogen (Part 1), J. J. Zuckerman( Ed.), Wiley, North America, (2009) 204.
  24. C. Zhao, Y. Kong, L.Liu and X. Wang: Electrochim. Acta, 273 (2018) 10. https://doi.org/10.1016/j.electacta.2018.04.020
  25. S. Y. Ha, I. G. Kim and D. S. Yoo: J. Korean Phys. Soc., 62 (2012) 709.
  26. M. T. Dong, J. Y. Xu, S. X. Liu, Y. Zhou and C. B. Huang: Luminescence, 29 (2014) 818. https://doi.org/10.1002/bio.2626
  27. K. Saikia, P. Deba and E. Kalita: Curr. Appl. Phys., 13 (2013) 925. https://doi.org/10.1016/j.cap.2013.01.042
  28. S. Zhang: Nanostructured Thin Films and Coatings, S. Zhang (Ed.), CRC Press, Boca Raton, (2010) 24.
  29. Y. Yu, L. Xu, J. Chen, H. Gao, S. Wang, J. Fang and S. Xu: Colloids Surf. B, 95 (2012) 247. https://doi.org/10.1016/j.colsurfb.2012.03.011