DOI QR코드

DOI QR Code

Microstructure and Liquid Al Erosion Property of Tribaloy T-800 Coating Material Manufactured by Laser Cladding Process

Laser Cladding 공정으로 제조된 Tribaloy T-800 코팅 소재의 미세조직 및 용융 Al 침식 특성

  • Kim, Kyoung-Wook (Department of Materials Science and Engineering, Inha University) ;
  • Ham, Gi-Su (Department of Materials Science and Engineering, Inha University) ;
  • Park, Sun-Hong (POSCO Technical Research Laboratories) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • 김경욱 (인하대학교 신소재공학과) ;
  • 함기수 (인하대학교 신소재공학과) ;
  • 박순홍 (포스코 기술연구소) ;
  • 이기안 (인하대학교 신소재공학과)
  • Received : 2020.06.10
  • Accepted : 2020.06.19
  • Published : 2020.06.28

Abstract

A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the laser-cladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 ㎛ and 60.6 ㎛ for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 ㎛ (HVOF MoB-CoCr coating), 204.83 ㎛ (laser cladded T-800), and 226.33 ㎛ (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.

Keywords

References

  1. N. Tang, Y. P. Li, S. Kurosu, Y. Koizumi, H. Matsumoto and A. Chiba: Corros. Sci., 60 (2012) 32. https://doi.org/10.1016/j.corsci.2012.04.015
  2. H. Kawase, M. Makimoto, K. Takagi, Y. Ishida and T. Tanaka: Trans. ISIJ, 23 (1983) 628. https://doi.org/10.2355/isijinternational1966.23.628
  3. K. Zhang and N. Y. Tang: Mater. Sci. Technol., 20 (2004) 739. https://doi.org/10.1179/026708304225017300
  4. M. X. Yao, J. B. C. Wu and R. Liu: Mater. Sci. Eng. A, 407 (2005) 299. https://doi.org/10.1016/j.msea.2005.07.054
  5. K. Zhang, N. Yong Tang and F. E. Goodwin: J. Mater. Sci., 42 (2007) 9736. https://doi.org/10.1007/s10853-007-1978-y
  6. H. Habazaki, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood and X. Zhou: Trans. IMF, 75 (1997) 18. https://doi.org/10.1080/00202967.1997.11871137
  7. V. Teixeira: Vacuum, 64 (2002) 373. https://doi.org/10.1016/S0042-207X(01)00333-5
  8. Y. S. Ding, W. N. Li, S. Iaconetti, X. F. Shen, J. D. Carlo, F. S. Galasso and S. L. Suib: Surf. Coat. Technol., 200 (2006) 3041. https://doi.org/10.1016/j.surfcoat.2005.05.040
  9. A. Ioakeimidis, C. Christodoulou, M. Lux-Steiner and K. Fostiropoulos: J. Solid State Chem., 244 (206) 20. https://doi.org/10.1016/j.jssc.2016.08.034
  10. B. J. Gill and R. C. Tucker: Mater. Sci. Technol., 2 (1986) 207. https://doi.org/10.1179/026708386790123396
  11. Z. Duan and J. Heberlein: J. Therm. Spray Technol., 11 (2002) 44. https://doi.org/10.1361/105996302770348961
  12. T. Stoltenhoff, H. Kreye and H. J. Richter: J. Therm. Spray Technol., 11 (2002) 542. https://doi.org/10.1361/105996302770348682
  13. M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri, C. Giolli and A. Scrivani: Surf. Coat. Technol., 204 (2010) 2499. https://doi.org/10.1016/j.surfcoat.2010.01.031
  14. M. Li and P. D. Christofides: Chem. Eng. Sci., 61 (2006) 6540. https://doi.org/10.1016/j.ces.2006.05.050
  15. J. Nurminen, J. Nakki and P. Vuoristo: Int. J. Refract. Met. Hard Mater., 27 (2009) 472. https://doi.org/10.1016/j.ijrmhm.2008.10.008
  16. L. Sexton, S. Lavin, G. Byrne and A. Kennedy: J. Mater. Process. Technol., 122 (2002) 63. https://doi.org/10.1016/S0924-0136(01)01121-9
  17. L. Song and J. Mazumder: IEEE Trans. Control Syst. Technol., 19 (2011) 1349. https://doi.org/10.1109/TCST.2010.2093901
  18. S. Matthews and B. James: J. Therm. Spray Technol., 19 (2010) 1277. https://doi.org/10.1007/s11666-010-9519-7
  19. F. F. Khan, G. Bae, K. Kang, H. Na, J. Kim, T. Jeong and C. Lee: J. Therm. Spray Technol., 20 (2011) 1022. https://doi.org/10.1007/s11666-010-9610-0
  20. F. Wang, H. Mao, D. Zhang, X. Zhao and Y. Shen: Appl. Surf. Sci., 255 (2008) 3267. https://doi.org/10.1016/j.apsusc.2008.09.039
  21. S. Jiang, F. Yin, M. Zhang, M. Zhao and Z. Li: Int. J. Mater. Res., 105 (2014) 1191. https://doi.org/10.3139/146.111130
  22. K. Hamashima and Y. Shinozaki: Japan Weld. Soc., 62 (1998) 154.
  23. H. Mizuno and J. Kitamura: J. Therm. Spray Technol., 16 (2007) 404. https://doi.org/10.1007/s11666-007-9046-3
  24. J. Tuominen: Engineering coatings by laser cladding - the study of wear and corrosion properties, Tampere University of Technology, 845 (2009) 1.