DOI QR코드

DOI QR Code

포항분지 제3기 이암의 산성배수 발생 능력

Acid Rock Drainage Generation Capacity of Tertiary Mudstone in Pohang Basin

  • Baek, In-Woo (Dept. of Civil and Environ. Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Jae-Gon (Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Young-Suk (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Tae-Hyung (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 투고 : 2020.04.20
  • 심사 : 2020.06.14
  • 발행 : 2020.06.30

초록

본 연구에서 포항 제3기 이암의 실내시험을 통해 기본적인 특성과 산성배수 발생능력을 파악하였다. XRF 분석 결과 SiO2 성분이 약 60%로 가장 많이 포함되어 있으며, 다음으로 Al2O3와 Fe2O3 순으로 산성배수 발생 개연성이 높은 산화물이 많이 존재함을 알 수 있다. XRD 분석 결과 이암이 황철석(FeS2)을 포함하고 있어 산성배수 발생 개연성이 높은데, 유도결합플라즈마 분광분석기(ICP)로 분석 결과에서도 이암 시료에서 Fe2+ 이온이 높게 측정되었다. 이온 크로마토그래피(IC)로 측정한 음이온 분석 결과 모든 이암 시료 SO2-4 농도가 높게 측정되었다. 원소 분석결과 총 황(S) 함량이 높아 최대 산 발생량(MPA) 계산 결과 1% 이상으로 산성배수 발생 위험이 높게 나타났다. 결론적으로 제3기 이암은 시료에 따라 다소 차이가 있으나 전반적으로 산성배수 발생능력이 높은 것으로 나타났다.

This study determines the basic properties and acid rock drainage generation capacity of Pohang tertiary mudstone through laboratory experiments. According to X-ray fluorescence (XRF) analysis results, the mudstone of this area mostly comprised of SiO2 with a proportion of approximately 60%, followed in order by Al2O3 and Fe2O3. As such, it is clear that there is an abundance of aluminosilicates with a high probability of generating acid rock drainage. The XRD analysis showed that the mudstone contains pyrite (FeS2), it is highly likely to generate acid rock drainage, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis results showed that the mudstone samples contained a high amount of Fe2+ ions. As a result of anion analysis measured by ion chromatography (IC), all mudstone samples were measured to have high SO2-4 concentrations. According to elemental analysis, the total sulfur (S) content was high, which in turn indicates a high risk of acid rock drainage generation reflected by a maximum potential acidity (MPA) higher than 1%. All in all, although there were slight deviations between the tertiary mudstone samples, overall, the samples exhibited high acid rock drainage generation capacities.

키워드

참고문헌

  1. Baek, I.-W. (2020), Characteristics of Banking Structures Constructed with Improved Tertiary Mudstone with Composite Slag and Neutralizing and Coating Agents, MS. Thesis, Korea Maritime and Ocean University
  2. Ban, H. K., Lee, H. Y., Bae, K. J. and Cho, W. J. (2015), "Engineering Properties of Uncemented Mudrock from Yeoju Area, Gyeonggi-Do", Journal of Korean Geoenvironmental Society, Vol.16, pp.53-58.
  3. Choi, E.-K., Kim, S.-W., Hwang, W.-K., Kwon, H.-W. and Kim, T.-H. (2018), "A Study on Anisotropy of Magnetic Susceptibility of Clastic Sedimentary Rocks in the Gyeongsang Basin", Journal of The Korean Geotechnical Society, Vol.34, No.8, pp.5-14. https://doi.org/10.7843/KGS.2018.34.8.5
  4. Gillott, J. E. (1968), Clay in Engineering Geology. Elsevier, Amsterdam, p.296.
  5. Godfrey, N. (1980), "A Field Recognition Guide to Swelling Clay Rich Weathering Profiles in Overburden Sediments in the Northern Bowen Basin. "Sediments Through the Ages"", Proc 5th Australian Geological Convention, Perth, W.A. Geological Society of Australia Inc.
  6. Jeong, G.-B. (2006), A Study of Engineering Characteristics and Deformation Behavior of Pohang Mudstone, Youngnam University, Ph.D. thesis, pp.292.
  7. KIGAM (2019), Technology Development for Damage Reduction and Ecosystem Restoration in Acid Drainage Producing Construction Site, GP2017-041-2019, pp.160.
  8. Kim, J. G. (2007), "Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction", Econ. Environ. Geol., Vol.50, pp.651-660.
  9. Kim, J. W. (2017), Estimation of Chemical Weathering Index and Rock Property Reduction Considering Anisotropy of Clastic Sedimentary Rock in Korea, Ph.D. Thesis, Korea Maritime and Ocean University.
  10. Kim, K. S., You, B. O. and Lee, S. D. (2002), "Failure Characteristics of Cut Slopes of Shale in Kyoungsang Basin", Proceedings of the seminar and field workshop for mudstone and shale, organized by the Korean Geotechnical Society for Rock Mechanics Commission, pp.103-114.
  11. Kim, S.-W., Choi, E.-K., Kim, J.-W., Kim, T.-H. and Lee, K.-H. (2017), "Chemical Weathering Index of Clastic Sedimentary Rocks in Korea", The Journal of Engineering Geology, Vol.27, No.1, pp.67-79. https://doi.org/10.9720/kseg.2017.1.67
  12. Lee, G. M., Kim, J. G., Lee, J. S., Chon, C. M., Park, S. G., Kim, T. H., Ko, G. S. and Kim, T. K. (2005), "Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Cut Slope", Econ. Environ. Geol., Vol.38, pp.91-99.
  13. Lee, N. Y., Kim, Y. I., Jung, H. J. and Kim, Y. G. (2002), "Problems in Construction of Tunnel and Rock Slope at Mudstone and Shale Region", Proceedings of the seminar and field workshop for mudstone and shale, organized by the Korean Geotechnical Society for Rock Mechanics Commission, pp.115-140.
  14. Lee, Y.-H. and Jeong, G.-B. (2012), "Creep Characteristics of Mudstone According to Stress Level and Water Content", Journal of Korean Geoenvironmental Society, Vol.13, No.3, pp.39-51.
  15. Park, H. D. (2002), "Engineering Geological Properties of Mudstone and Shale", Proceedings of the Seminar and Field Workshop for Mudstone and Shale, organized by the Korean Geotechnical Society for Rock Mechanics Commission, pp.18-30.
  16. Smart, R., Skinner, W. M., Levay, G., Gerson, A. R., Thomas, J. E., Sobieraj, H., Schumann, R., Weisener, C. G., Weber, P. A., Miller, S. D. and Stewart, W. A. (2002), ARD test handbook: Project P387A, A Prediction and Kinetic Control of Acid Mine Drainage. Melbourne: AMIRA international Ltd., pp.A4-8, pp.D3-4.
  17. Snethen, D. R., Townsend, F. C., Johnson, L. D., Patrick, D. M. and Vedros, P. J. (1975), A Review of Engineering Experiences with Expansive Soils in Highway Subgrades, Waterways Experiment Station, NTIS No. ADA 020309, pp.4-25.
  18. Sobek, A. A., Schuller, W. A., Freeman, J. R. and Smith, R. M. (1978), Field and Laboratory Methods Applicable to Overburdens and Minesoils, EPA 600/2-78-054. U.S. Environmental Protection Agency. Cincinnati, OH. pp.47-50.
  19. Taylor, R. K. and Spears, D. A. (1981), "Laboratory Investigation of Mudrocks", Quarterly Journal of Engineering Geology and Hydrogeology, Vol.14, pp.291-309. https://doi.org/10.1144/GSL.QJEG.1981.014.04.08
  20. Van Eeckhout, E. M. (1976), "The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, V.13(2), pp.61-67. https://doi.org/10.1016/0148-9062(76)90705-1