DOI QR코드

DOI QR Code

Studies on Fluid Inclusion and Pyrite Geochemistry in the Moisan Au-Ag Deposit, Haenam District, Korea

해남 모이산 금-은 광상의 유체포유물 및 황화물 지구화학 연구

  • Park, Sol (Department of Energy and Resources Engineering, Inha University) ;
  • Seo, Jung Hun (Department of Energy and Resources Engineering, Inha University) ;
  • Kim, Chang Seong (PrimoResource Ltd.) ;
  • Yang, Yoon-Seok (Department of Energy and Resources Engineering, Inha University) ;
  • Oh, Jihye (Division of the Deep-Sea Mineral Resources Research Center, Korea institute of Ocean Science & Technology) ;
  • Kim, Jonguk (Division of the Deep-Sea Mineral Resources Research Center, Korea institute of Ocean Science & Technology)
  • 박솔 (인하대학교 에너지자원공학과) ;
  • 서정훈 (인하대학교 에너지자원공학과) ;
  • 김창성 (프리모리소스(주)) ;
  • 양윤석 (인하대학교 에너지자원공학과) ;
  • 오지혜 (해양과학기술원) ;
  • 김종욱 (해양과학기술원)
  • Received : 2020.04.21
  • Accepted : 2020.05.21
  • Published : 2020.06.28

Abstract

We occur together with telluride minerals. Fluid inclusions in the euhedral quartz crystals are mainly aqueous liquid-rich inclusions, which have salinities about 0.18-2.24 wt% NaCl equivalent. Some quartz vein contains aqueous vapor-rich inclusions as well. Homogenization temperatures of the assemblages of the liquid-rich inclusions are about 141-384 ℃, and the temperatures are lower at the shallower vein samples. In the high Au-Ag grade depth intervals, relatively deeper fluids have relatively higher salinities and homogenization temperatures, while shallower fluids show somewhat wider ranges. These might indicate that the deep Au-Ag bearing hydrothermal fluids at the Moisan area experienced phase separation as well as mixing with meteoric water by decreasing pressure. Au-Ag precipitation in the Moisan deposit is not associated with pyrite, but pyrite include Au-Ag bearing phase as an inclusion, which might possibly be tellurides or electrum. Au/Ag ratios in the Au-Ag bearing phase do not change with different depth.

금-은 천열수 광상의 유체 환경의 재구성을 위하여, 해남 일대에 위치한 모이산 광상에서 획득한 심도별 맥상 시료에 대하여, 변질-조직 양상, 유체포유물 microthermometry, 그리고 황철석 LA-ICP-MS 분석을 실시하였다. 맥상 시료에서 모암은 규화 및 석영-일라이트 변질양상이 확인되며, 석영맥은 모암으로부터 초기의 옥수-미립 석영-황철석에서 후기 맥중심의 자형 석영으로 발달된다. 일부 시료에서는 황철석과 함께 텔루라이드 광물이 함께 나타난다. 유체포유물은 염도가 0.18-2.24wt% 가량의 액상 수용액 포유물들이 주로 발견되며 일부 기체상 포유물 또한 발견된다. 유체포유물의 균질화 온도는 141-384℃ 범위에서 나타나며, 대체로 깊어질수록 균질화온도가 높아진다. 특히 금-은 침전이 집중된 고품위 구간에서는 얕아질수록 유체의 염도 및 균질화 온도가 낮아지며 또한 범위가 넓어지는 것을 볼 수 있다. 이를 통하여 함 금-은 유체의 압력하강으로 인한 열수의 비등 그리고 천수와의 혼합이 금-은 침전과 함께 이루어진 것으로 생각된다. 황철석의 LA-ICP-MS 분석을 통하여, 황철석 광물 내의 금-은 치환은 이루어지지 않음을 발견하였다. 하지만, 황철석 내의 금-은은 대부분 텔루라이드 혹은 에렉트럼 등 함 금은 광물의 포유물에 저장이 됨을 알 수 있었다. 깊이별 황철석 내 포획된 함 금-은 광물은 차이가 없었고, 포유물의 금-은 비율 또한 차이가 없음을 확인하였다.

Keywords

References

  1. Barton, P.B. and Skinner, B.J. (1979) Sulfide mineral stabilities: in Barnes, HL, ed., Geochemistry of hydrothermal ore deposits. 2nd ed.: New York, Wiley-Interscience, p.218-403.
  2. Belousov, I., Danyushevsky, L., Olin, P., Gilbert, S. and Thompson, J. (2015) STDGL3 - a new calibration standard for sulphide analysus by LA-ICP-MS. Goldschmidt 2015 Abstracts, A251.
  3. Bodnar, R.J. (2003a) Fluid Inclusions: Analysis and Interpretation. Mineral, Assoc. Canada, Short Course, v.32, p.1-8.
  4. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for -NaCl fluid inclusions, In: Fluid Inclusions in Minerals: Methods and Applications Virginia Tech, Blacksburg, p.117-131.
  5. Bowden, C.D. (2007) Epithermal systems of the Seongsan district, South Korea an ivestigation on the geological setting and spatial and temporal relationship between high and low sulfidation systems. Unublished Ph.D. thesis, James Cook University, Australia, 334p.
  6. Choi, S.-G., Lee, D.-E., Pak, S.J., Choi, S.-H. and Kang, H.-S. (2001) Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits: Mugeug Mineralized Area. Economic and Environmental Geology, v.34, n.5, p.423-435.
  7. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.-M., Kim, C.S. and Park, M.-E. (2005) Cretaceous epithermal goldilver mineralization and geodynamic environment, Korea. Ore Geology Reviews, v.26, n.1-2, p.115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  8. Cole, D.R. and Drummond, S.E. (1986) The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal preciousmetal ore deposits. Journal of Geochemical Exploration, v.25, p.45-79. https://doi.org/10.1016/0375-6742(86)90007-5
  9. Cooke, D.R. and McPhail, D.C. (2001) Epithermal Au-Ag- Te Mineralization, Acuan, Baguio District, Philipines: Numerical Simulations of Mineral Depostion. Economic Gelogy, v.96, p.109-131.
  10. Corbett, G.J. and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization. Society of Economic Geologists Special Publication 6.
  11. Driesner, T. and Heinrich, C.A. (2007) The system $H_2O$-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to $1000^{\circ}C$, 0 to 5000bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, v.71, n.20, p.4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
  12. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems: Transitions from Porphyry to Epitermal Environments. Society of Economic Geologists Special Publication, v.10, p.285-313.
  13. Goldstein, R.H. (2003) Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, p.9-53.
  14. Goldstein, R.H. and Reynolds, T.J. (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology Short Course.
  15. Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A. and Yardley, B.W.D. (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course, v.40, p.328-333.
  16. Gunther, D., Audetat, A., Frischknecht, R. and Heinrich, C.A. (1998) Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, v.13, p.263-270. https://doi.org/10.1039/A707372K
  17. Heald, P., Foley, N.K. and Hayba, D.O. (1987) Comparative anatomy of volcanic-hosted epithermal deposits; acidsulfate and adularia-sericite types. Economic Geology, v.82, n.1, p.1-26. https://doi.org/10.2113/gsecongeo.82.1.1
  18. Hedenquist, J.W. (1987) Mineralization associated with volcanic-realted hydrothermal systems in the circum pacific Basin. In: Horn, M.K (Ed.), The 4th Cricum Pacific Conference of Energt and Mineral Resources, August 1987, Singapore, Transactions. American Association of Petroleum Geologist, p.513-524.
  19. Hedenquist, J.W., Arribas, R.A. and Gonzalez-Urien, E. (2000) Chapter 7 Exploration for Epithermal Gold Deposits. Reviews in Economic Geology, v.13, p.245-277.
  20. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audetat, A., Gunther, D., Hattendorf, B., Bleiner, D., Guillong, M. and Horn, I. (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, v.67, n.18, p.3473-3497. https://doi.org/10.1016/S0016-7037(03)00084-X
  21. Henley, R.W. (1991) Epithermal gold deposits in volcanics terranes. Gold metallogeny and exploration: London, Blackie, p.133-164.
  22. Henley, R.W. and Ellis, A.J. (1983) Geothermal systems ancient and modern: a geochemical review. Earth- Science Reviews, v.19, p.1-50. https://doi.org/10.1016/0012-8252(83)90075-2
  23. Kang, J.-H., Lee, D.-S., Ryoo, C.-R., Koh, S.-M. and Chi, S.-J. (2011) Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization. Economic and Environmental Geology, v.44, n.5, p.413-431. https://doi.org/10.9719/EEG.2011.44.5.413
  24. Kelly, K.D., Romberger, S.B., Beaty, D.W., Pontius, J.A., Snee, L.W., Stein, H.J. and Thompson, T.B. (1998) Geochemical and Geochronological Constraints on the Genesis of Au-Te Deposits at Cripple Creek, Colorado. Economic Gelogy, v.93, p.981-1012. https://doi.org/10.2113/gsecongeo.93.7.981
  25. Kim, C.S. (2011) Genesis of the Cretaceous Low-sulfidadtion Epithermal Au-Ag Deposit in the Haenam district, Repulic of Korea: Implication of Se tpye (Eunsan) and Te type (Moisan), 190 pp.
  26. Kim, I.J. (1992) Alteration Zoning, Mineral Assemblage and Geochemistry of the Hydrohtermal Clas Deposits Related to Cretacous Felsic Magmatism in the Haenam Area, Southwest Korea. Journal of Korean Institute of Mining Geology, v.25, n.4, p.397-416.
  27. Kim, I.J. and Kusakabe, M. (1993) Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula. Journal of Korean Institute of Mining Geology, v.26, n.1, p.11-20.
  28. Kim, I.J. and Nagao, K. (1992) K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rock in Southwest Korea. The Journal of the Petrological Society of Korea, v.1, n.1, p.58-70.
  29. Kim, S.-O., Cheon, S.W., Park, G.-R. and Wang, S. (2015) Characterization of Selenium (Se) Distribution in Soils and Crops at Moi-san, Haenam. Economic and Environmental Geology, v.48, n.3, p.213-219. https://doi.org/10.9719/EEG.2015.48.3.213
  30. Koh, S.M. (2009) Technical development on the life cycle of the Haenam epithermal gold mineralized area and hydrothermal clay resources.
  31. Kovalenker, V.A., Safonov, Y.G., Naumov, V.B. and Rusinov, V.L. (1997) The Epithermal Gold-Telluride Kochbulak Deposit (Uzbekistan). Geology of Ore Deposits, v.39, p.107-128.
  32. Lee, D.S. and Lee, H.-Y. (1976) Geological and geochemical study on the rock sequences containing oily materials in southwestern coast area of Korea. Journal of Korean Institute of Mining Geology, v.9, p.45-74.
  33. Lee, G.J. and Koh, S.M. (2010) Geology and mineralization of the Moisan epitermal gold deposits in Haenam area, Jollanamdo. Petrological Society of Korea of Korea and Mineralogical Society of Korea.
  34. Lee, S., Yang, K., Jeon, B.G., Bak, G., Koh, S.M. and Seo, J.-R. (2009) Glass Inclusions in Quartz Phenocrysts of Tuff from Sunshin Au Mining Area, Haenam, Jeonnam. The Journal of the Petrological Society of Korea, v.18, n.4, p.337-384.
  35. Lindgren, W. (1922) A suggestion for the terminology of certain mineral deposits. Economic Gelogy, v.17, p.292-294. https://doi.org/10.2113/gsecongeo.17.4.292
  36. Moncada, D., Rimstidt, J.D. and Bodnar, R.J. (2019). How to form a giant epithermal precious metal deposit: Relationships between fluid flow rate, metal concentration of ore-forming fluids, duration of the oreforming process, and ore grade and tonnage. Ore Geology Reviews, 113.
  37. Moon, D.H., Koh, S.M. and Lee, G.J. (2010) Geochemistry of the Moisan Epithermal Gold-silver Deposit in Haenam Area. Economic and Environmental Geology, v.43, n.5, p.491-503.
  38. Moon, H.-S., Kim, Y.H., Kim, J.H. and You, J.H. (1990) KAr Ages of Alunite and Sericite in Altered Rocks, and Volcanic Rocks around the Haenam Area, Southwest Korea. Journal of Korean Institute of Mining Geology, v.23, n.2, p.135-141.
  39. Pals, D.W. and Spry, P.G. (2003) Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineralogy and Petrology, v.79, n.3-4, p.285-307. https://doi.org/10.1007/s00710-003-0013-5
  40. Ransome, F.L. (1907) The association of alunite with gold in the Goldfield district, Nevada. Economic Gelogy, v.2, p.667-692. https://doi.org/10.2113/gsecongeo.2.7.667
  41. Richards, J.P. and Kerrich, R. (1993) The Porgera Gold Mine, Papua New Guinea - Magmatic Hydrothermal to Epithermal Evolution of an Alkalic-type Precious Metal Deposit. Economic Gelogy, v.88, p.1017-1052. https://doi.org/10.2113/gsecongeo.88.5.1017
  42. Roedder, E. and Bodnar, R.J. (1980) Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth Planet. Science, v.8, p.263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403
  43. Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985) A Practical Guide to Fluid Inclusion Studies. Blackie and Sons, p.63-77.
  44. Simmons, S.F. and Browne, P.R.L. (2000) Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. Economic Gelogy, v.95, p.971-999. https://doi.org/10.2113/gsecongeo.95.5.971
  45. Simpson, M.P., Alinkas, S.S., Mauk, J.L. and Bodnar, R.J. (2015) Fluid Inclusion Chemistry of Adularia-Sericite Epithermal Au-Ag Deposits of the southern Hauraki Goldfield, New Zealand. Economic Gelogy, v.110, p.763-789. https://doi.org/10.2113/econgeo.110.3.763
  46. So, C.-S., Dunchenko, V.Y., Yun, S.-T., Park, M.-E., Choi, S.-G. and Shelton, K.L. (1995) Te- and Se-Bearing Epithermal Au-Ag Mineralization, Prasolovskoye, Kunashir Island, Kuril Island Arc. Economic Gelogy, v.90, p.105-117. https://doi.org/10.2113/gsecongeo.90.1.105
  47. Spycher, N.F. and Reed, M.H. (1989) Evolution of a Broadlands-Type Epithermal Ore Fluid along Alternative P-T Paths: Implications for the Transport and Deposition of Base, Precious, and Volatile Metals. Economic Gelogy, v.84, p.328-359. https://doi.org/10.2113/gsecongeo.84.2.328
  48. Tombros, S., St. Seymour, K. and Wiliams-Jones, A.E. (2010) Controls on Tellurium in Base, Precious, and Telluride Minerals in the Panormos Bay Ag-Au-Te Deposits, Tinos Island, Cyclades, Greece. Economic Gelogy, v.105, p.1097-1111. https://doi.org/10.2113/econgeo.105.6.1097
  49. White, N.C. and Hedenquist, J.W. (1995) Epithermal gold deposit: styles, characteristics and exploration. Economic Gelogy, v.23, n.1, p.9-13.
  50. Yoon, C.-H. (1995) Variation of Gold Content in Rocks and Minerals from the Seongsan and Ogmaesan Clay Deposits in the Haenam Area, Korea. Economic and Environmental Geology, v.28, n.6, p.571-577.
  51. Zhai, D., Williams-Jones, A.E., Liu, J., Tombros, S.F. and Cook, N.J. (2018) Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Economic Geology, v.113, n.6, p.1359-1382. https://doi.org/10.5382/econgeo.2018.4595
  52. Zhang, Y., Hobbs, B.E., Ord, A., Barnicoat, A., Zhao, C., Walshe, J.L. and Lin, G. (2003) The influence of faulting on host-rock permeability, fluid flow and ore genesis of gold deposits: a theoretical 2D numerical model. Journal of Geochemical Exploration, v.78-79, p.279-284. https://doi.org/10.1016/S0375-6742(03)00075-X