DOI QR코드

DOI QR Code

Evaluation of accumulated particulate matter on roadside tree leaves and its metal content

가로수 수종별 잎의 미세먼지 축적량 및 금속 원소 함량 평가

  • Kwon, Seon-Ju (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Cha, Seung-Ju (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Joo-Kyung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Jin Hee (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2020.06.04
  • Accepted : 2020.06.15
  • Published : 2020.06.30

Abstract

It is known that different plant species have ability to deposit different amounts of particulate matter (PM) on their leaves and plants can absorb heavy metals in PM through their leaves. Heavy metals in PM can have toxic effect on human body and plants. Therefore, PM on different roadside trees at Chungbuk national University including box tree (Buxus koreana), yew (Taxus cuspidate), royal azalea (Rhododendron yedoense), and retusa fringetree (Chionanthus retusa) was quantified based on particle size (PM>10 and PM2.5-10). The metal concentration in PM accumulated on leaves was analyzed using inductively coupled plasma-mass spectroscopy. In this study, the mass of PM>10 deposited on the surface of the tree leaves ranged from 6.11 to 32.7 ㎍/㎠, while the mass of PM2.5-10 ranged from 0 to 14.8 ㎍/㎠. The royal azaleas with grooves and hair on the leaf surface retained PM particles for longer time, while the yews and box trees with wax on leaf surfaces accumulated more PM. The PM contained elements in crustal material such as Al, Ca, Mg, and Fe and heavy metals including Cu, Pb and Zn. The concentration of elements in crustal material was higher in the coarser size, while heavy metal concentration was relatively higher in the finer size fraction. The Mn, Cd, Cu, Ni, Pb, and Zn concentrations of leaves and PM2.5-10 were significantly correlated indicating that PM was taken up through tree leaves.

식물 종마다 잎에 미세먼지(PM)를 흡착하는 정도가 서로 다르며 잎을 통해 PM을 흡수할 수 있는 것으로 알려져 있다. PM에 포함된 중금속은 인체 및 식물에 영향을 미칠 수 있으며 입자 크기에 따라 미치는 영향이 다를 수 있다. 따라서 충북대학교 내 도로변에 위치한 회양목 (Buxus koreana), 주목 (Taxus cuspidate), 철쭉 (Rhododendron yedoense), 이팝나무 (Chionanthus retusa)와 같은 가로수 잎에 축적된 PM을 입자 크기(PM>10 및 PM2.5-10)에 따라 분획 및 정량화하였다. 잎에 축적된 크기 별 PM의 금속 농도는 유도 결합 플라스마 질량 분석법(ICP-MS)으로 분석하였다. 나무 잎 표면에 축적된 PM>10의 질량은 6.11-32.7 ㎍/㎠, PM2.5-10의 질량은 0-14.8 ㎍/㎠이었다. 잎 표면에 홈이 있고 털을 갖고 있는 철쭉이 작은 PM 입자를 잘 유지하고 있었으며 광택이 있는 잎 표면을 가진 주목과 회양목은 많은 PM을 축적하고 있었다. PM은 Al, Ca, Mg, Fe와 같은 지각 구성 원소와 Cu, Pb, Zn와 같은 중금속을 포함하고 있었다. 지각 구성 원소의 농도는 PM>10 입자에서 더 높았고, 중금속 농도는 PM2.5-10 입자에서 상대적으로 더 높았다. 잎에 흡수된 Mn, Cd, Cu, Ni, Pb, Zn과 PM2.5-10의 중금속 농도는 유의한 상관관계를 보여 나무 잎을 통해 PM이 흡수될 수 있음을 확인하였다.

Keywords

References

  1. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2): 166-175 https://doi.org/10.1007/s13181-011-0203-1
  2. Dzierzanowski K, Popek R, Gawronska H, Sæbo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation 13(10): 1037-1046 https://doi.org/10.1080/15226514.2011.552929
  3. Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 261(1-2): 1-8 https://doi.org/10.1016/j.tox.2009.04.035
  4. Brown JS, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 10(1): 12 https://doi.org/10.1186/1743-8977-10-12
  5. Jouraeva VA, Johnson DL, Hassett JP, Nowak DJ (2002) Differences in accumulation of PAHs and metals on the leaves of Tiliaxeuchlora and Pyrus calleryana. Environ Pollut 120(2): 331-338 https://doi.org/10.1016/S0269-7491(02)00121-5
  6. Schaumann F, Borm PJ, Herbrich A, Knoch J, Pitz M, Schins RP, Luettig B, Hohlfeld JM, Heinrich J, Krug N (2004) Metal-rich ambient particles (particulate matter2. 5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med 170(8): 898-903 https://doi.org/10.1164/rccm.200403-423OC
  7. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, Sioutas C (2011) Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmospheric Environ 45(16): 2651-2662 https://doi.org/10.1016/j.atmosenv.2011.02.066
  8. Lindbom J, Gustafsson M, Blomqvist G, Dahl A, Gudmundsson A, Swietlicki E, Ljungman AG (2006) Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages. Chem Res Toxicol 19(4): 521-530 https://doi.org/10.1021/tx0503101
  9. Hjortenkrans D, Bergback B, Haggerud A (2006) New metal emission patterns in road traffic environments. Environ Monit Assess 117(1-3): 85-98 https://doi.org/10.1007/s10661-006-7706-2
  10. Beckett KP, Freer Smith PH, Taylor G (2000) Effective tree species for local air quality management. Arboric J 26(1): 12-19
  11. Leonard RJ, McArthur C, Hochuli DF (2016) Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For Urban Green 20: 249-253 https://doi.org/10.1016/j.ufug.2016.09.008
  12. Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Philos Trans R Soc Lond B Biol Sci 324(1223): 247-265 https://doi.org/10.1098/rstb.1989.0047
  13. Beckett KP, Freer-Smith PH, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99(3): 347-360 https://doi.org/10.1016/S0269-7491(98)00016-5
  14. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater 325: 36-58 https://doi.org/10.1016/j.jhazmat.2016.11.063
  15. Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN (2000) Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environ Pollut 107(3): 413-420 https://doi.org/10.1016/S0269-7491(99)00159-1
  16. Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environ 105: 53-60 https://doi.org/10.1016/j.atmosenv.2015.01.032
  17. United States Environmental Protection Agency (1996) Air Quality Criteria for Particulate Matter (EPA/600/P-95/001). Office of Research and Development, Research Triangle Park, Durham, North Carolina
  18. Airkorea (2019) Real-Time Standby Information, http://www.airkorea.or.kr/web/realSearch
  19. Korea Meteorological Administration (2019) Wheather Information http://www.weather.go.kr/weather/climate/past_cal.jsp
  20. Wang H, Shi H, Li Y, Yu Y, Zhang J (2013) Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front Environ Sci Eng 7(4): 579-588 https://doi.org/10.1007/s11783-013-0524-1
  21. Mo L, Ma Z, Xu Y, Sun F, Lun X, Liu X, Chen J, Yu X (2015) Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS One 10(10): e0140664 https://doi.org/10.1371/journal.pone.0140664
  22. Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes-a 3-year study. Int J Phytoremediation 15(3): 245-256 https://doi.org/10.1080/15226514.2012.694498
  23. Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427: 347-354 https://doi.org/10.1016/j.scitotenv.2012.03.084
  24. Lee S, Kwak J, Kim H, Lee J (2013) Properties of roadway particles from interaction between the tire and road pavement. Int J Automot Technol 14(1): 163-173 https://doi.org/10.1007/s12239-013-0018-y
  25. Popoola LT, Adebanjo SA, Adeoye BK (2018) Assessment of atmospheric particulate matter and heavy metals: a critical review. Int J Environ Sci Technol (Tehran) 15(5): 935-948 https://doi.org/10.1007/s13762-017-1454-4
  26. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Total Environ 400(1-3): 270-282 https://doi.org/10.1016/j.scitotenv.2008.06.007
  27. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen LC, Maciejczyk P (2012) Source apportionment and elemental composition of PM2. 5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollut Res 3(3): 331-340 https://doi.org/10.5094/APR.2012.037
  28. Ersoy N, Gozlekci S, Kaynak L (2003) Seasonal variations in the content of nutrient elements in the leaves of fig (Ficus carica L. Yesilguz). Acta Hortic 605: 269-275 https://doi.org/10.17660/actahortic.2003.605.41
  29. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3): 1036-1042 https://doi.org/10.1021/es902190u
  30. Schreck E, Foucault Y, Sarret G, Sobanska S, Cecillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427: 253-262 https://doi.org/10.1016/j.scitotenv.2012.03.051

Cited by

  1. Influence of Cadmium on the Antioxidant Status with in vitro Cultures of Rhododendron japonicum vol.48, pp.6, 2020, https://doi.org/10.1134/s1062359021060194