DOI QR코드

DOI QR Code

Optimal Design of Coverglass Pattern in Building-Integrated Photovoltaic for Improved Yearly Electrical Energy

Building-Integrated Photovoltaic 시스템의 연간 발전 에너지 향상을 위한 커버글라스 패턴의 최적설계

  • Kim, Taehyeon (Department of Electronic Engineering, Inha University) ;
  • Lee, Seung-Chul (Department of Electronic Engineering, Inha University) ;
  • Park, Woo-Sang (Department of Electronic Engineering, Inha University)
  • Received : 2020.04.20
  • Accepted : 2020.04.23
  • Published : 2020.07.01

Abstract

A coverglass pattern was designed to improve the annual electrical energy production of a building-integrated photovoltaic (BIPV) module installed in the exterior walls of buildings. The transmittance pattern was calculated using ray tracing, and the results were derived by optimizing the simulation using Taguchi's method. We obtained the optimal pattern by analyzing the conventional patterns for improving the transmittance and derived design factors by quantifying the pattern. By calculating the influence of electrical energy on each design factor, we obtained the optimal coverglass pattern that produced the maximum annual electrical energy. The annual electrical energy production improved by approximately 11.79% compared to the non-patterned coverglass.

Keywords

References

  1. Y. S. Lim, G. Lalchand, and G.M.S. Lin, Energy Policy, 36, 2130 (2008). [DOI: https://doi.org/10.1016/j.enpol.2008.02.016]
  2. F. Cucchiella, I. D'Adamo, and S.C.L. Koh, J. Cleaner Prod., 98, 241 (2015). [DOI: https://doi.org/10.1016/j.jclepro.2013.10.043]
  3. F. Azadian and M.A.M. Radzi, Renewable Sustainable Energy Rev., 22, 527 (2013). [DOI: https://doi.org/10.1016/j.rser.2013.01.056]
  4. L. Lu and H. X. Yang, J. Sol. Energy Eng., 126, 929 (2004). [DOI: https://doi.org/10.1115/1.1701883]
  5. S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, Sol. Energy Mater. Sol. Cells, 90, 2710 (2006). [DOI: https://doi.org/10.1016/j.solmat.2006.04.001]
  6. J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, Sol. Energy Mater. Sol. Cells, 95, 2576 (2011). [DOI: https://doi.org/10.1016/j.solmat.2011.03.005]
  7. K. H. Nielsen, D. K. Orzol, S. Koynov, S. Carney, E. Hultstein, and L. Wondraczek, Sol. Energy Mater. Sol. Cells, 128, 283 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.05.034]
  8. K. Tvingstedt, S. D. Zilio, O. Inganas, and M. Tormen, Opt. Express, 16, 21608 (2008). [DOI: https://doi.org/10.1364/OE.16.021608]
  9. K. Tvingstedt, Z. Tang, and O. Inganas, Appl. Phys. Lett., 101, 163902 (2012). [DOI: https://doi.org/10.1063/1.4759125]
  10. S. B . Rim, S . Zhao, S . R. S cully, M . D . McGehee, a nd P. Peumans, Appl. Phys. Lett., 91, 243501 (2007). [DOI: https://doi.org/10.1063/1.2789677]
  11. C. Cho, H. Kim, S. Jeong, S. W. Baek, J. W. Seo, D. Han, K. Kim, Y. K. Park, S. Yoo, and J. Y. Lee, Sol. Energy Mater. Sol. Cells, 115, 36 (2013). [DOI: https://doi.org/10.1016/j.solmat.2013.03.014]
  12. L. Sun, L. Lu, and H. Yang, Appl. Energy, 90, 233 (2012). [DOI: https://doi.org/10.1016/j.apenergy.2011.01.062]
  13. D. Paul, S. N. Mandal, D. Mukherjee, and S.R.B. Chaudhuri, Renewable Energy, 35, 2182 (2010). [DOI: https://doi.org/10.1016/j.renene.2010.02.026]
  14. G. Taguchi, M. El Sayed, and C. Hsaing, Quality Engineering and Quality System (McGraw-Hill, New York, 1989).