DOI QR코드

DOI QR Code

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment

DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구

  • Jang, Hyun Gyu (Display Research Center, Korea Electronics Technology Institute) ;
  • Kim, Won Keun (Display Research Center, Korea Electronics Technology Institute) ;
  • Oh, Min Suk (Display Research Center, Korea Electronics Technology Institute) ;
  • Kwon, Soon-Hyung (Display Research Center, Korea Electronics Technology Institute)
  • 장현규 (전자부품연구원 디스플레이연구센터) ;
  • 김원근 (전자부품연구원 디스플레이연구센터) ;
  • 오민석 (전자부품연구원 디스플레이연구센터) ;
  • 권순형 (전자부품연구원 디스플레이연구센터)
  • Received : 2020.05.12
  • Accepted : 2020.05.19
  • Published : 2020.07.01

Abstract

The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

Keywords

References

  1. W. M. Yun, J. Jang, S. Nam, L. H. Kim, S. J. Seo, and C. E. Park, ACS Appl. Mater. Interfaces, 4, 3247 (2012). [DOI: https://doi.org/10.1021/am300600s]
  2. N. Liu, J. Baek, S. M. Kim, S. Hong, Y. K. Hong, Y. S. Kim, H. S. Kim, S. Kim, and J. Park, ACS Appl. Mater. Interfaces, 9, 42943 (2017). [DOI: https://doi.org/10.1021/acsami.7b16670]
  3. J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 92, 072104 (2008). [DOI: https://doi.org/10.1063/1.2838380]
  4. E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). [DOI: https://doi.org/10.1063/1.3387819]
  5. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett., 82, 1117 (2003). [DOI: https://doi.org/10.1063/1.1553997]
  6. J. Jin, J. J. Lee, B. S. Bae, S. J. Park, S. Yoo, and K. H. Jung, Org. Electron., 13, 53 (2012). [DOI: https://doi.org/10.1016/j.orgel.2011.09.008]
  7. Y. H. Kim, J. S. Heo, T. H. Kim. S. Park, M. H. Yoon, J. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh, and S. K. Park, Nature, 489, 128 (2012). [DOI: https://doi.org/10.1038/nature11434]
  8. S. Lee and Y. S. Song, J. Semicond, 1, 16 (2017).
  9. K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, and P. Atanassov, Chem. Commun., 49, 2539 (2013). [DOI: https://doi.org/10.1039/C3CC40324F]
  10. S. Park, K. H. Kim, J. W. Jo, S. Sung, K. T. Kim, W. J. Lee, J. Kim, H. J. Kim, G. R. Yi, Y. H. Kim, M. H. Yoon, and S. K. Park, Adv. Funct. Mater., 25, 2807 (2015). [DOI: https://doi.org/10.1002/adfm.201500545]
  11. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, and S. M. George, Appl. Phys. Lett., 89, 031915 (2006). [DOI: https://doi.org/10.1063/1.2221912]
  12. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]