초록
Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.