DOI QR코드

DOI QR Code

Effect of two-temperature on the energy ratio at the boundary surface of inviscid fluid and piezothermoelastic medium

  • 투고 : 2019.05.31
  • 심사 : 2020.05.18
  • 발행 : 2020.06.25

초록

The phenomenon of reflection and transmission of plane waves at an interface between fluid half space and orthotropic piezothermoelastic solid half-space with two-temperature has been investigated. Energy ratios of various reflected and transmitted waves are computed with the use of amplitude ratios. The law of conservation of energy across the interface has been justified. It is found that the energy ratios are the functions of angle of incidence, frequency of independent wave and depend on the different piezothermoelastic material. A piezothermoelastic material has been considered which is in welded contact with water. Variations of energy ratios corresponding to the reflected waves and transmitted waves are computed and shown graphically for the two different models. A particular reduced case of interest is also discussed.

키워드

참고문헌

  1. Achenbach, J.D. (1973), "Wave propagation in elastic solids", North Holland Publ., Amsterdam.
  2. Awad, E.S. (2011), "A note on the spatial decay estimates in nonclassical linear thermoelastic semi-cylindrical bounded domains", J. Therm. Stresses, 34(2), 147-160. https://doi.org/10.1080/01495739.2010.511942.
  3. Bassiouny, E. and Sabry, R. (2013), "Fractional order two temperature thermo-elastic behaviour of piezoelectric materials", J. Appl. Math. Phys., 1(5), 110-120. http://dx.doi.org/10.4236/jamp.2013.15017.
  4. Bassiouny, E. and Youssef, H.M. (2008), "Two-temperature generalised thermopiezoelasticity of finite rod subjected to different types of thermal loadings", J. Therm. Stresses, 31(1), 233-245. https://doi.org/10.1080/01495730701737902.
  5. Chandrasekharaiah, D.S. (1984), "A generalised linear thermoelasticity theory of piezoelectric media", Acta Mech., 71, 293-349. http://10.1007/bf01173936.
  6. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Z. Angew. Math. Phys., 19(4), 614-627. https://doi.org/10.1007/BF01594969.
  7. Chen, P.J. and Williams, W.O. (1968), "A note on non-simple heat conduction", Z. Angew. Math. Phys., 19(6), 969-970. https://doi.org/10.1007/BF01602278.
  8. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Z. Angew. Math. Phys., 20(1), 107-112. https://doi.org/10.1007/BF01591120.
  9. Deswal, S., Sheokand, S.K. and Kalkal, K.K. (2019), "Reflection at the free surface of fiber-reinforced thermoelastic rotating medium with two-temperature and phase-lag", Appl. Math. Model., 65, 106-119. https://doi.org/10.1016/j.apm.2018.08.004.
  10. Ezzat, M.A., El-Karamany, A.S. and Awad, E.S. (2010), "On the coupled theory of thermo-piezoelectric/ piezomagnetic materials with two-temperature", Can. J. Phys., 88(5), 307-315. https://doi.org/10.1139/P10-015.
  11. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2018), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
  12. Kumar, R. and Kaur, M. (2017), "Reflection and transmission of plane waves at micropolar piezothermoelastic solids", J. Solid Mech., 9(3), 508-526.
  13. Kumar, R. and Sharma, P. (2017), "Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media", Coupled Syst. Mech., 6(2), 157-174. https://doi.org/10.12989/csm.2017.6.2.157.
  14. Kumar, R. and Sharma, P. (2019), "Response of fractional order on energy ratios at the boundary surface of fluid-piezothermoelastic media", Appl. Math. Comp., 358(1), 194-203. https://doi.org/10.1016/j.amc.2019.04.020.
  15. Kumar, R., Vashishth, A.K. and Ghangas, S. (2018), "Waves in anisotropic thermoelastic medium with phase lag, two-temperature and void", Mater. Phys. Mech., 35, 26-138.
  16. Lotfy, Kh. (2019), "A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field", Sci. Rep., 9(1), 3319. https://doi.org/10.1038/s41598-019-39955-z.
  17. Majhi, M.C. (1995), "Discontinuities in generalized thermo elastic wave propagation in a semi- infinite piezoelectric rod", J. Tech. Phys., 36(3), 269-278. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2941280.
  18. Marin, M. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  19. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Comput. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
  20. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  21. Marin, M. and Ochsner, A. (2017), "An initial boundary value problem for modelling a piezoelectric dipolar body", Continuum Mech. Thermodyn., 32(2), 267-278. doi: 10.1007/s00161-017-0599-1.
  22. Mindlin, R. D. (1974), "Equation of high frequency of thermopiezoelectric crystals plates", Int. J. Solids Struct., 625-637. https://doi.org/10.1007/s00161-017-0599-1.
  23. Miranville, A. and Quintanilla, R. (2017), "On the spatial behavior in two-temperature generalized thermoelastic theories", Z. Angew. Math. Phys., 68(5). https://doi.org/10.1007/s00033-017-0857-x.
  24. Nowacki, W. (1979), "Foundation of Linear Piezoelectricity", Interactions in Elastic Solids, Springer, Wein, Chapter 1.
  25. Nowacki, W. (1978), "Some general theorems of thermo-piezoelectricity", J. Therm. Stresses, 1(2), 171-182. https://doi.org/10.1080/01495737808926940.
  26. Sangwan, A., Singh, B. and Singh, J. (2018), "Reflection and transmission of plane waves at an interface between elastic and micropolar piezoelectric solid half-spaces", Tech. Mech., 38(3), 267-285. https://doi.org/10.24352/UB.OVGU-2018-034.
  27. Sharma, M.D. (2010a), "Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media", Acta Mech., 215(1-4), 307-318. https://doi.org/10.1007/s00707-010-0336-3.
  28. Sharma, M.D. (2010b), "Piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium", Proc. R. Soc. A, 466(2119), 1977-1992. https://doi.org/10.1098/rspa.2009.0534.
  29. Sharma, M.D. (2018), "Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium", Waves Random Complex Medium, 28(3), 570-587. https://doi.org/10.1080/17455030.2017.1370154.
  30. Tzou, H.S. and Bao, Y. (1995), "A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications", J. Sound Vib., 184(3), 453-473. https://doi.org/10.1006/jsvi.1995.0328.
  31. Vashishth, A.K. and Sukhija, H. (2014), "Inhomogeneous waves at the boundary of an anisotropic piezo-thermoelastic medium", Acta Mech., 225(12), 3325-3338. https://doi.org/10.1007/s00707-014-1139-8.
  32. Vashishth, A.K. and Sukhija, H. (2015), "Reflection and transmission of plane waves from fluid piezothermoelastic solid interface", Appl. Math. Mech. Engl. Ed., 36(1), 11-36. https://doi.org/10.1007/s10483-015-1892-9.
  33. Vashishth, A.K. and Sukhija, H. (2017), "Inhomogeneous waves in porous piezo-thermoelastic solids", Acta Mech., 228(5), 1891-1907. https://doi.org/10.1007/s00707-017-1805-8.
  34. Wang, X. (2018), "Transient responses of laminated anisotropic piezothermoelastic plates and cylindrical shells with interfacial diffusion and sliding in cylindrical bending", Math. Mech. Solution, 1-26. https://doi.org/10.1177%2F1081286518769480.