References
- Achenbach, J.D. (1973), "Wave propagation in elastic solids", North Holland Publ., Amsterdam.
- Awad, E.S. (2011), "A note on the spatial decay estimates in nonclassical linear thermoelastic semi-cylindrical bounded domains", J. Therm. Stresses, 34(2), 147-160. https://doi.org/10.1080/01495739.2010.511942.
- Bassiouny, E. and Sabry, R. (2013), "Fractional order two temperature thermo-elastic behaviour of piezoelectric materials", J. Appl. Math. Phys., 1(5), 110-120. http://dx.doi.org/10.4236/jamp.2013.15017.
- Bassiouny, E. and Youssef, H.M. (2008), "Two-temperature generalised thermopiezoelasticity of finite rod subjected to different types of thermal loadings", J. Therm. Stresses, 31(1), 233-245. https://doi.org/10.1080/01495730701737902.
- Chandrasekharaiah, D.S. (1984), "A generalised linear thermoelasticity theory of piezoelectric media", Acta Mech., 71, 293-349. http://10.1007/bf01173936.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Z. Angew. Math. Phys., 19(4), 614-627. https://doi.org/10.1007/BF01594969.
- Chen, P.J. and Williams, W.O. (1968), "A note on non-simple heat conduction", Z. Angew. Math. Phys., 19(6), 969-970. https://doi.org/10.1007/BF01602278.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Z. Angew. Math. Phys., 20(1), 107-112. https://doi.org/10.1007/BF01591120.
- Deswal, S., Sheokand, S.K. and Kalkal, K.K. (2019), "Reflection at the free surface of fiber-reinforced thermoelastic rotating medium with two-temperature and phase-lag", Appl. Math. Model., 65, 106-119. https://doi.org/10.1016/j.apm.2018.08.004.
- Ezzat, M.A., El-Karamany, A.S. and Awad, E.S. (2010), "On the coupled theory of thermo-piezoelectric/ piezomagnetic materials with two-temperature", Can. J. Phys., 88(5), 307-315. https://doi.org/10.1139/P10-015.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2018), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
- Kumar, R. and Kaur, M. (2017), "Reflection and transmission of plane waves at micropolar piezothermoelastic solids", J. Solid Mech., 9(3), 508-526.
- Kumar, R. and Sharma, P. (2017), "Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media", Coupled Syst. Mech., 6(2), 157-174. https://doi.org/10.12989/csm.2017.6.2.157.
- Kumar, R. and Sharma, P. (2019), "Response of fractional order on energy ratios at the boundary surface of fluid-piezothermoelastic media", Appl. Math. Comp., 358(1), 194-203. https://doi.org/10.1016/j.amc.2019.04.020.
- Kumar, R., Vashishth, A.K. and Ghangas, S. (2018), "Waves in anisotropic thermoelastic medium with phase lag, two-temperature and void", Mater. Phys. Mech., 35, 26-138.
- Lotfy, Kh. (2019), "A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field", Sci. Rep., 9(1), 3319. https://doi.org/10.1038/s41598-019-39955-z.
- Majhi, M.C. (1995), "Discontinuities in generalized thermo elastic wave propagation in a semi- infinite piezoelectric rod", J. Tech. Phys., 36(3), 269-278. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2941280.
- Marin, M. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Comput. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M. and Ochsner, A. (2017), "An initial boundary value problem for modelling a piezoelectric dipolar body", Continuum Mech. Thermodyn., 32(2), 267-278. doi: 10.1007/s00161-017-0599-1.
- Mindlin, R. D. (1974), "Equation of high frequency of thermopiezoelectric crystals plates", Int. J. Solids Struct., 625-637. https://doi.org/10.1007/s00161-017-0599-1.
- Miranville, A. and Quintanilla, R. (2017), "On the spatial behavior in two-temperature generalized thermoelastic theories", Z. Angew. Math. Phys., 68(5). https://doi.org/10.1007/s00033-017-0857-x.
- Nowacki, W. (1979), "Foundation of Linear Piezoelectricity", Interactions in Elastic Solids, Springer, Wein, Chapter 1.
- Nowacki, W. (1978), "Some general theorems of thermo-piezoelectricity", J. Therm. Stresses, 1(2), 171-182. https://doi.org/10.1080/01495737808926940.
- Sangwan, A., Singh, B. and Singh, J. (2018), "Reflection and transmission of plane waves at an interface between elastic and micropolar piezoelectric solid half-spaces", Tech. Mech., 38(3), 267-285. https://doi.org/10.24352/UB.OVGU-2018-034.
- Sharma, M.D. (2010a), "Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media", Acta Mech., 215(1-4), 307-318. https://doi.org/10.1007/s00707-010-0336-3.
- Sharma, M.D. (2010b), "Piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium", Proc. R. Soc. A, 466(2119), 1977-1992. https://doi.org/10.1098/rspa.2009.0534.
- Sharma, M.D. (2018), "Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium", Waves Random Complex Medium, 28(3), 570-587. https://doi.org/10.1080/17455030.2017.1370154.
- Tzou, H.S. and Bao, Y. (1995), "A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications", J. Sound Vib., 184(3), 453-473. https://doi.org/10.1006/jsvi.1995.0328.
- Vashishth, A.K. and Sukhija, H. (2014), "Inhomogeneous waves at the boundary of an anisotropic piezo-thermoelastic medium", Acta Mech., 225(12), 3325-3338. https://doi.org/10.1007/s00707-014-1139-8.
- Vashishth, A.K. and Sukhija, H. (2015), "Reflection and transmission of plane waves from fluid piezothermoelastic solid interface", Appl. Math. Mech. Engl. Ed., 36(1), 11-36. https://doi.org/10.1007/s10483-015-1892-9.
- Vashishth, A.K. and Sukhija, H. (2017), "Inhomogeneous waves in porous piezo-thermoelastic solids", Acta Mech., 228(5), 1891-1907. https://doi.org/10.1007/s00707-017-1805-8.
- Wang, X. (2018), "Transient responses of laminated anisotropic piezothermoelastic plates and cylindrical shells with interfacial diffusion and sliding in cylindrical bending", Math. Mech. Solution, 1-26. https://doi.org/10.1177%2F1081286518769480.