Acknowledgement
이 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20182010106460)
References
- Afram, A., & Janabi-Sharifi, F. (2014). Review of modeling methods for HVAC systems. Applied Thermal Engineering. 67, pp.507-519. https://doi.org/10.1016/j.applthermaleng.2014.03.055
- Afram, A., Janabi-Sharifi, F., Fung, A. S., & Raahemifar, K. (2017). Artificial neural network based model predictive control and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy and Buildings. 141, pp.96-113. https://doi.org/10.1016/j.enbuild.2017.02.012
- ASHRAE (2014). ASHRAE Guideline 14-2014: measurement of energy and demand savings. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA
- Barber, D., & Bishop, C. M. (1998). Ensemble learning in Bayesian neural networks. Nato ASI Series F Computer and Systems Sciences, 168, (pp. 215-238).
- Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424.
- Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?. Structural safety, 31(2), 105-112. https://doi.org/10.1016/j.strusafe.2008.06.020
- Every, P. M. V., Rodriguez, M., Jones, C. B., Mammoli, A. A., & Martinez-Ramon, M. (2017). Adavanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models. Energy and Buildings. 149, pp.216-224. https://doi.org/10.1016/j.enbuild.2017.05.053
- Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059).
- Gal, Y. (2016). Uncertainty in deep learning. PhD Thesis. University of Cambridge.
- Hinton, G. E., & Van Camp, D. (1993). Keeping the neural networks simple by minimizing the description length of the weights. In Proceedings of the sixth annual conference on Computational learning theory (pp. 5-13).
- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
- Kendall, A. G., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).
- Kendall, A. G. (2019). Geometry and uncertainty in deep learning for computer vision. PhD Thesis. University of Cambridge.
- Kim, H., Jung, D. C., & Choi, B. W. (2019). Exploiting the Vulnerability of Deep Learning-Based Artificial Intelligence Models in Medical Imaging: Adversarial Attacks. Journal of the Korean Society of Radiology, 80 (2):259 https://doi.org/10.3348/jksr.2019.80.2.259
- Kwon, Y., Won, J. H., Kim, B. J., & Paik, M. C. (2018). Uncertainty quantification using bayesian neural networks in classification: Application to ischemic stroke lesion segmentation.
- Kwon, Y., Won, J. H., Kim, B. J., & Paik, M. C. (2020). Uncertainty quantification using bayesian neural networks in classification: Application to biomedical image segmentation. Computational Statistics & Data Analysis, 142, 106816. https://doi.org/10.1016/j.csda.2019.106816
- Neal, R. M. (1995). Bayesian learning for neural networks. PhD thesis, University of Toronto.
- Nikolaidou, E., Wright, J., & Hopfe, C. J. (2015, December). Early and detailed design stage modelling using Passivhaus design; what is the difference in predicted building performance. In BS2015, 14th Conference of International Building Performance Simulation Association, Hyderabad, India, December 7 (Vol. 9, pp. 2166-2173).
- Park, S. H., Ahn, K. U., Hwang, S. H., Choi, S. K., & Park, C. S. (2019). Machine learning vs. hybrid machine learning model for optimal operation of a chiller. Science and Technology for the Built Environment. 25, pp.209-220. https://doi.org/10.1080/23744731.2018.1510270
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
- Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54(1), (pp. 45-66). https://doi.org/10.1023/B:MACH.0000008084.60811.49
- Williams, C. K. (1997). Computing with infinite networks. NIPS.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2). Cambridge, MA: MIT press.