DOI QR코드

DOI QR Code

Characteristics of Suillus bovinus fairy rings and genets associated with thinning intensity in Pinus densiflora forests

소나무림에서 간벌강도에 따른 황소비단그물버섯(Suillus bovinus)의 균환과 genet 특성

  • Park, Yong-Woo (Department of forest science, Chungbuk National University) ;
  • Lee, Hwa-Yong (Department of forest science, Chungbuk National University) ;
  • Koo, Chang-Duck (Department of forest science, Chungbuk National University)
  • Received : 2020.05.27
  • Accepted : 2020.06.25
  • Published : 2020.06.30

Abstract

To study the fairy ring and genet characteristics of Suillus bovinus based on thinning intensity in Pinus densiflora forests, a simple sequence repeat (SSR) analysis was performed on the fruiting bodies of the plant. In pine wood production forests, the thinning strengths applied were 34%, 45%, and 60%. As a result, the number of fruiting bodies in the 34% treatment area was 104, which was higher than that in the other treatment areas. In the 34% treatment area, fruiting bodies occurred in a circular shape, within a diameter of approximately 5 meters (m) of the trees. In the 45% treatment area, the fruiting bodies were randomly distributed between 6 to 7 m from the trees, while in the 60% treatment, fruiting bodies occurred in a narrow oval shape, 6 m from the trees. In the control area, two fruiting bodies were present around the root collar. Hybridity was confirmed in the SSR markers of Sb-CA1 and Sb-CA3. The fruiting bodies in the 34% treatment area had a He / Ho value lower than that in the 60% treatment area. In fruiting bodies of the 34% treatment area, a total of 20 genets were identified, with an average size of 14±11 ㎡; 60% of genets were formed by a single fruiting body. In fruiting bodies of the 45% treatment area, a total of 6 genets were identified and the average size was 11±12 ㎡; 50% of genets were formed by a single fruiting body. In fruiting bodies of the 60% treatment area, a total of 10 genets were identified, with an average size of 1.1±0.8 ㎡; 70% of genets were formed by a single fruiting body. Thus, the formation ratio of a new genet increases when the thinning intensity is increased.

소나무림에서 간벌 강도에 따른 황소비단그물버섯의 균사집단과 genet의 특징에 관하여 알아보고자 34%, 45%, 60%의 강도별 간벌이 이루어진 소나무 목재생산림에서 2018년 발생한 황소비단그물버섯을 대상으로 SSR(Simple sequence repeat) 분석을 실행한 결과 발생한 자실체의 개체수는 34% 간벌지역이 104개체로 다른 처리구 비하여 약 60~100개체 이상 많았다. 34% 간벌 지역에서 발생 균사집단의 형태는 임목을 기준으로 크게 약 5 m 직경의 원형의 형태로 발생하였고 일부 자실체는 바위 위에 약 3~4 cm 두께로 깔려진 낙엽위에 발생하기도 하였다. 45% 간벌 지역에서는 자실체가 6~7 m 범위에서 벌채된 그루터기를 포함하여 무작위적으로 분포되어 있었다. 60% 간벌지역에서는 입목과 입목 사이에 6 m 길이의 폭이 좁은 타원형이나 선형의 형태로 발생하였다. 대조구에서는 총 2개의 자실체가 입목의 근원부 주위에서 발생하였다. 각 처리구에서 SSR 분석결과 Sb-CA1과 Sb-CA3의 maker만이 잡종성을 확인 할 수 있었으며 그 결과 34% 간벌 처리구에서 발생한 황소비단그물버섯은 60% 간벌 처리구에 비하여 He/Ho의 값이 1정도 낮았다. 34% 간벌 처리구에서는 총 20개의 genet이 확인되었고 genet의 크기는 평균 14±11 ㎡ 였다. 단일 자실체로 형성된 genet은 전체 genet의 60% 였다. 45% 간벌 처리구에서는 총 6개의 genet이 확인되었고 평균 크기는 11±12 ㎡ 였다. 단일 자실체로 형성된 genet은 전체 genet의 50% 였다. 60% 간벌 처리구에서는 총 10개의 genet이 확인되었고 genet의 크기는 평균 1.1±0.8 ㎡였다. 단일 자실체로 형성된 genet은 전체 genet의 70%로 나타나 간벌의 강도가 작을수록 균사생장에 의한 genet의 크기는 더 크며 간벌 강도가 클수록 단일 genet의 형성율이 증가되었다.

Keywords

References

  1. Allen MF. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge, UK.
  2. Arumanayagam S, Arunmani M. 2014. Rock phosphate solubilization by the ectomycorrhizal fungus Laccaria fraterna and its associated mycorrhizal helper bacterial strains. Afr J Biotechnol 13: 2524-2530. https://doi.org/10.5897/AJB2014.13828
  3. Brundrett M. 1991. Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171-313. https://doi.org/10.1016/S0065-2504(08)60099-9
  4. Dahlberg A. 1991. Ectomycorrhiza in coniferous forest: structure and dynamics of populations and communities. Ph. D. thesis. Swedish University of Agricultural Sciences. Uppsala, Sweden.
  5. Dahlberg A, Stenlid J. 1990. Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115: 487-493. https://doi.org/10.1111/j.1469-8137.1990.tb00475.x
  6. Dahlberg A, Stenlid J. 1994. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128: 225-234. https://doi.org/10.1111/j.1469-8137.1994.tb04006.x
  7. Deacon JW, Fleming LV. 1992. Interactions of ectomycorrhizal fungi. in: M.F. Allen. (ed.), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, USA. 249-300.
  8. Douhan GW, Vincenot L, Gryta H, Selosse MA. 2011. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115: 569-597. https://doi.org/10.1016/j.funbio.2011.03.005
  9. Fleming LV. 1983. Succession of mycorrhizal fungi on birch: infection of seedlings planted around mature trees. Plant Soil 71: 263-267. https://doi.org/10.1007/BF02182661
  10. Fogel R. 1980. Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol 86: 199-212. https://doi.org/10.1111/j.1469-8137.1980.tb03189.x
  11. Fox FM. 1986. Ultrastructure and infectivity of sclerotia of the ectomycorrhizal fungus Paxillus involutus on birch (Betula spp.). Trans Br Mycol Soc. 87: 627-630. https://doi.org/10.1016/S0007-1536(86)80103-6
  12. Hintikka V. 1988. On the macromycete flora in oligotrophic pine forests of different ages in South Finland. Acta Bot Fenn 136: 89-94.
  13. Hirose D, Kikuchi J, Kanzaki N, Futai K. 2004. Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white pine plantation. New Phytol 164: 527-541. https://doi.org/10.1111/j.1469-8137.2004.01188.x
  14. Lawrence E. 2013. Henderson's dictionary of biology (15th edition). Benjamin Cummings, San Francisco, USA. 354.
  15. Jang SK. 2014. Distribution of higher fungi in Wolchulsan National Park. Korean J Mycol 42: 9-20. https://doi.org/10.4489/KJM.2014.42.1.9
  16. Kensuke K, Matsushita N, Suzuki K. 2007. Development of SSR markers from an ectomycorrhizal fungus, Suillis bovinus. Mycoscience 48: 255-258. https://doi.org/10.1007/S10267-007-0356-6
  17. Koo CD. 2000. Correlation between production of Tricholoma matsutake and annual ring growth of Pinus densiflora. J Korean For Soc 89: 232-240.
  18. Lee CY. 2008. Development distribution of higher fungi as vegetation Mt. Deogyu. Woosuk University. pp.11-45. Wanju, South Korea.
  19. Lee SH, Kim JS, Kim HE, Koo CD, Park JI, Sin CS, Shin WS. 2005. Effect of soil moisture and weather (atmospheric) conditions on the fruiting of Sarcodon aspratus in oak stand. J Korean Soc For Sci 94: 370-376.
  20. Lee HY, Koo CD. 2016. Genet variation of ectomycorrhizal Suillus granulatus fruiting bodies in Pinus strobus stands. Mycobiology 44: 7-13. https://doi.org/10.5941/MYCO.2016.44.1.7
  21. Melanie DJ, Damiel MD, John WGC. 2002. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399-422. https://doi.org/10.1046/j.1469-8137.2003.00698.x
  22. Newton AC, Haigh J. 1998. Diversity of ectomycorrhizal fungi in Britain: a test of the species-area relationship, and the role of host preference. New Phytol 138: 619-627. https://doi.org/10.1046/j.1469-8137.1998.00143.x
  23. Ogawa M. 1985. Ecological characters of ectomycorrhizal fungi and their mycorrhizae - an introduction to the ecology of higher fungi. JARQ 18: 305-314.
  24. Park YW, Koo CD, Choi HB, Kim JG, Lee HS, Lee HY. 2018. Effect of thinning on environmental factors and wild mushroom fruting in Quercus mongolica forest. J Korean Soc For Sci 107: 1-15.
  25. Savoie JM, Largeteau ML. 2011. Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol 89: 971-979.
  26. Shaw PJA, Kibby G, Mayes J. 2003. Effects of thinning treatment on an ectomycorrhizal succession under Scots pine. Mycol Res 107: 317-328. https://doi.org/10.1017/S0953756203007238
  27. Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Academic press, London, UK. 785.
  28. Sun X, Feng W, Li M, Shi J, Ding G. 2019. Phenology and cultivation of Suillus bovinus, an edible mycorrhizal fungus, in a Pinus massoniana plantation. Can J For Res 48: 960-968.
  29. Twieg BD, Durall DM, Simard SW. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176: 437-447. https://doi.org/10.1111/j.1469-8137.2007.02173.x
  30. Van Elsas JD, Trevors JT. 1997. Modern soil microbiology. Marcel Dekker, Inc., New York, USA. 63-126.
  31. Zhou Z, Miwa M., Hogetsu T. 2001. Polymorphism of simple sequence repeats reveals gene flow within and between ectomycorrhizal Suillus grevillei populations. New Phytol 149: 339-348. https://doi.org/10.1046/j.1469-8137.2001.00029.x