DOI QR코드

DOI QR Code

설악산 상록침엽수림의 고도별 종조성 및 치수 밀도 변화

Species Composition Dynamics and Seedling Density Along Altitudinal Gradients in Coniferous Forests of Seorak Mountain

  • 김지동 (국립백두대간수목원 생물자원조사팀) ;
  • 변성엽 (국립백두대간수목원 연구전략팀) ;
  • 송주현 (공주대학교 산림자원학과) ;
  • 채승범 (국립산림과학원 산림생명정보연구과) ;
  • 김호진 (공주대학교 산림자원학과) ;
  • 이정은 (공주대학교 산림자원학과) ;
  • 윤이슬 (공주대학교 산림자원학과) ;
  • 윤충원 (공주대학교 산림자원학과)
  • Kim, Ji-Dong (Forest Bioresources Survey Team, Baekdudaegan National Arboretum) ;
  • Byeon, Seong Yeob (Research Planning and Coordination Team, Baekdudaegan National Arboretum) ;
  • Song, Ju Hyeon (Department of Forest Resources, Kongju National University) ;
  • Chae, Seung Beom (Division of Forest Bioinformation, National Institute of Forest Science) ;
  • Kim, Ho Jin (Department of Forest Resources, Kongju National University) ;
  • Lee, Jeong Eun (Department of Forest Resources, Kongju National University) ;
  • Yun, I Seul (Department of Forest Resources, Kongju National University) ;
  • Yun, Chung Weon (Department of Forest Resources, Kongju National University)
  • 투고 : 2019.12.24
  • 심사 : 2020.03.19
  • 발행 : 2020.06.30

초록

식생의 수직적 분포는 고도구배에 따라 구분할 수 있으며, 수종의 분포패턴이 다르게 나타날 수 있다. 본 연구는 상록침엽수림의 고도별 분포 변화에 대한 기초자료를 제시하기 위해, 식생구조, 고도에 따른 종조성, 치수 밀도와 고도에 따른 변화에 대해 분석하였다. 중요치 분석 결과, 식생구조는 분비나무(12.2), 잣나무(10.86), 시닥나무(8.11) 등의 혼효림 구조로 나타났다. 고도에 따른 종조성 결과로, 분비나무와 두루미꽃은 해발고도가 증가함에 따라 중요치가 함께 증가하였다. 1,400 m에서 1,600 m 구간 사이에서 미역줄나무의 출현은 숲 틈의 발생이 빈번함을 알 수 있었다. 종다양성지수는 1,400-1,500 m 구간에서 가장 높게 나타나 위에 숲 틈 발생의 당위성을 반영해주는 결과로 적절하였다. 상록침엽수의 치수밀도 변화는 2년 동안 분비나무가 402 ± 5.4 ha-1에서 528 ± 11.6 ha-1으로 유의한 수준에서 증가하였고, 잣나무는 57 ± 1.3 ha-1에서 56 ± 1.6 ha-1으로 감소하였다. 해발고도별 치수밀도 변화는 1,500-1,600 m에서 분비나무와 잣나무 모두 대폭 증가하였다. 본 연구결과는 치수의 증가나 감소 경향이 mast seeding 해를 파악해야 하기 위한 기초자료로써 활용될 수 있다. 따라서 설악산의 상록침엽수종 개체군뿐만 아니라 치수의 생존 및 사망에 대한 지속적인 모니터링에 본 연구결과가 활용되길 기대해본다.

The vertical distribution of vegetation can be classified according to the altitudinal gradient and the distribution of species along this gradient. The purpose of this study was to analyze the vegetation structure, species composition, dimensional density, and change according to altitude. These data illustrate the distribution of coniferous forest by altitude. By order of importance, the vegetation structure of this mixed forest consisted of Abies nephrolepis (12.2), Pinus koraiensis (10.86), and Acer komarovii (8.11). As a result of species composition according to the altitude, A. nephrolepis and Maianthemum bifolium increased in importance with increasing altitude. Tripterygium regelii emerged between 1,400 m and 1,600 m, which indicates that forest gaps were frequent at that elevation. The species diversity index was the highest from 1,400-1,500 m and coincided with the presence of forest gaps. The changes in A. nephrolepis of evergreen conifers increased significantly from 402 ± 5.4 ha.-1 to 528 ± 11.6 ha.-1 for two years, and decreased from 57 ± 1.3 ha.-1 to 56 ± 1.6 ha.-1 for P. koraiensis. The density of A. nephrolepis and P. koraiensis seedlings significantly increased at 1,500-1,600 m. The results of this study can be used as a basis to identify the mast seeding year with the increase or decrease of seedlings. In addition to documenting the evergreen conifer population of the Seorak Mountain, these results can be built upon for future monitoring of seedlings mortality.

키워드

참고문헌

  1. Bolton, N.W. and D'Amato, A.W. 2011. Regeneration responses to gap size and coarse woody debris within natural disturbance-based silvicultural systems in northeastern Minnesota. Forest Ecology and Management 262(7): 1215-1222. https://doi.org/10.1016/j.foreco.2011.06.019
  2. Braun-Blanquet, J. 1964. Pflanzensoziologie Grundzuge der Vegetationkunde (3rd Ed.). Springer-Verlag, New York, pp. 865. (in German)
  3. Brigitta, E., Thomas, K., Martin, M. and Peter, U. 2009. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecology 202(1): 79-89. https://doi.org/10.1007/s11258-008-9556-1
  4. Brokaw, N. amd Busing, R.T. 2000. Niche versus chance and tree diversity in forest gaps. Trends in Ecology & Evolution 15(5): 183-188. https://doi.org/10.1016/S0169-5347(00)01822-X
  5. Brower, J.E. and Zar, J.H. 1977. Field and laboratory methods for general ecology. Wm. C. Brown Company Publishers. Iowa, U.S.A. pp. 596.
  6. Cho, M.G., Chung, J.M., Im, H.I., Noh, I., Kim., T.W., Kim, C.Y. and Moon, H.S. 2016. Ecological characteristics of sub-alpine coniferous forest on Banyabong in Mt. Jiri. Journal of Climate Change Research 7(4): 465-476. (in Korean with English abstract) https://doi.org/10.15531/ksccr.2016.7.4.465
  7. Danby, R.K. and Hik, D.S. 2007. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology 95(2): 352-363. https://doi.org/10.1111/j.1365-2745.2006.01200.x
  8. DeJong, T.M. 1975. Comparison of three diversity indices based on their components of richness and evenness. Oikos 26(2): 222-227. https://doi.org/10.2307/3543712
  9. Do, M.S., Lee, J.H., Gwon, J.H. and Song, H.K. 2012. Vegetation structure and ecological properties of Picea jezoensis community. CNU Journal of Agricultural Science 39(4): 525-534. (in Korean with English abstract)
  10. Duguid, M.C., Frey, B.R., Ellum, D.S., Kelty, M. and Ashton, M.S. 2013. The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern new England. Forest Ecology and Management 303: 148-159. https://doi.org/10.1016/j.foreco.2013.04.018
  11. Dukes, J.S. 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563-568. https://doi.org/10.1007/s004420000549
  12. Ellenberg, H. 1956. Aufgaben und Methoden der Vegetationskunde. Ulmer, Stuttgart, Germany, pp. 136.(in German)
  13. Ellum, D.S., Ashton, M.S. and Siccama, T.G. 2010. Spatial pattern in herb diversity and abundance of second growth mixed deciduous-evergreen forest of southern new England. Forest Ecology and Management 259(8): 1416-1426. https://doi.org/10.1016/j.foreco.2010.01.011
  14. Germino, M.J., Smith, W.K. and Resor, A.C. 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162(2): 157-168. https://doi.org/10.1023/A:1020385320738
  15. Grabherr, G,, Gottfried, M,, Gruber, A. and Pauli, H. 1995. Patterns and current changes in alpine plant diversity. In: Chapin FS III, Korner, C. (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Berlin, pp. 166-81.
  16. Grace, J., Berninger, F. and Nagy, L. 2002. Impacts of climate change on the tree line. Annals of Botany 90(4): 537-544. https://doi.org/10.1093/aob/mcf222
  17. Guisan, A. and Theurillat, J.P. 2000. Assessing alpine plant vulnerability to climate change: a modelling perspective. Integrated Assess 1(4): 307-320. https://doi.org/10.1023/A:1018912114948
  18. Han, S.H., Han, S.H. and Yun, C.W. 2016. Classification and stand characteristics of subalpine forest vegetation at Hyangjeukbong and Jungbong in Mt. Deogyusan. Journal of Korean Forest Society 105(1): 48-62.(in Korean with English abstract) https://doi.org/10.14578/jkfs.2016.105.1.48
  19. Hogg, E.H. and Victor, J.L. 1991. The impact of Calamagrostis canadensis on soil thermal regimes after logging in northern Alberta. Canadian Journal of Forest Research 21(3): 387-394. https://doi.org/10.1139/x91-048
  20. Hong, M.P., Lee, H.J., Chun, Y.M. and Hong, B.R. 2010. Flora of Mt. Seorak, Gangwon-do. Korean Journal of Environment and Ecology 24(4): 436-486. (in Korean with English abstract)
  21. Hunziker, U. and Brang, P. 2005. Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. Forest Ecology and Management 210(1-3): 67-79. https://doi.org/10.1016/j.foreco.2005.02.019
  22. Kang, H.S., Lim, J.H., Chun, J.H., Lee, I.K., Kim, Y.K. and Lee, J.H. 2007. Invasion of Korean Pine seedlings originated from neighbour plantations into the natural mature deciduous broad-leaved forest in Gwangneung, Korea. Journal of Korean Forest Society 96(1): 107-114. (in Korean with English abstract)
  23. Kim, H.S., Bae, S.W., Jang, S.C. and Jeong, J.M. 2011. Stand structure and growth characteristics at different elevations of the Korean Pine(Pinus koraiensis) natural forest on Mt. Seorak. Journal of Forest Science 27(3): 157-167. (in Korean with abstract English)
  24. Kim, J.D., Lim, J.H. and Yun, C.W. 2019. Dynamics of Abies nephrolepis Seedlings in relation to environmental factor in Seorak Mountain, South Korea. Forests 10(8): 702. https://doi.org/10.3390/f10080702
  25. Kim, J.D., Park, G.E., Lim, J.H. and Yun, C.W. 2017. Phytosociological community type classification and flora of vascular plants for the forest vegetation of Daecheongbong Area in Mt. Seorak. Journal of Korean Forest Society 106(2): 130-149. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2017.106.2.130
  26. Kim, J.D., Park, G.E., Lim, J.H. and Yun, C.W. 2018. The Change of seedling emergence of Abies koreana and altitudinal species composition in the subalpine area of Mt. Jiri over short-term (2015-2017). Korean Journal Environment and Ecology 32(3): 313-322. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.3.313
  27. Kim, N.S. and Lee, H.C. 2013. A study on change and distributions of Korean fir in sub-alpine zone, Journal of the Korea Society of Environmental Restoration Technology 16(5): 49-57. (in Korean with English abstract) https://doi.org/10.13087/kosert.2013.16.5.049
  28. Klasner, F.L. and Fagre, D.B. 2002. A half century of change in alpine treeline patterns at Glacier National Park, Montana, USA. Arctic Antarctic and Alpine Research 34(1): 49-56. https://doi.org/10.1080/15230430.2002.12003468
  29. Kong, W.S. 2000. Geoecology on the subalpine vegetation and landscape of Mt. Sorak. Journal of the Korean Geographical Society 35(2): 177-187. (in Korean with abstract English)
  30. Kong, W.S. and Lim, J.H. 2008. Disjunctive distribution of Vaccinium vitis-idaea and thermal condition. Journal of the Korean Geographical Society 43(4): 495-150. (in Korean with abstract English)
  31. Koo, K.A., Kim, J., Kong, W.S., Jung, H.C. and Kim, G.H. 2016. Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. Journal of the Korea Society of Environmental Restoration Technology 19(6): 19-30. (in Korean with English abstract) https://doi.org/10.13087/kosert.2016.19.6.19
  32. Korea Forest Service. 2010a. Korea Biodiversity Information System. http://www.nature.go.kr/
  33. Korea Forest Service. 2010b. Korea Plant Names Index Committee. http://www.nature.go.kr/kpni/
  34. Kullman, L. 1993. Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate change variability: evidence from central Sweden. Journal of Vegetation Science 4(6): 765-772. https://doi.org/10.2307/3235613
  35. Kullman, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90(1): 68-77. https://doi.org/10.1046/j.0022-0477.2001.00630.x
  36. Kullman, L. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. Journal of Ecology 95(1): 41-52. https://doi.org/10.1111/j.1365-2745.2006.01190.x
  37. Kumar, A. and Ram, J. 2005. Anthropogenic disturbances and plant biodiversity in forests of Uttaranchal, central Himalaya. Biodiversity and Conservation 14(2): 309-331. https://doi.org/10.1007/s10531-004-5047-4
  38. Kwon, H.J., Gwon, J.H, Han, K.S., Kim, M.Y. and Song, H.K. 2010. Subalpine forest vegetation of Daecheongbong Area, Mt. Seoraksan. Korean Journal of Environment and Ecology 24(2): 194-201. (in Korean with English abstract)
  39. Lee, C.B. and Kim, H.H. 2017. Elevational patterns of plant species richness and relative importance of climatic and topographic factors on the Mt. Seorak, South Korea. Journal of Agriculture & Life Science 52(3): 1-11. (in Korean with English abstract) https://doi.org/10.14397/jals.2018.52.3.1
  40. Lee, J.H., Shin, H.S., Cho, H.J. and Yun, C.W. 2014. Subalpine Conifer Forest Communities. National Institute of Ecology. GeoBook, Korea, pp. 136. (in Korean)
  41. Lee, T.B. 2003. Coloured Flora of Korea. Hyangmunsa. Korea. pp. 999. (in Korean)
  42. Lenoir, J., Gegout, J.C., Pierrat, J.C., Bontemps, J.D. and Dhote, J.F. 2009. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography 32(5): 765-777. https://doi.org/10.1111/j.1600-0587.2009.05791.x
  43. Lloyd, A.H. and Fastie, C.L. 2003. Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10(2): 176-185. https://doi.org/10.1080/11956860.2003.11682765
  44. MacDonald, G.M., Szeicz, J.M., Claricoates, J. and Dale, K.A. 1998. Response of the central Canadian treeline to recent climatic changes. Annals of the Association of American Geographers 80(2): 183-208.
  45. Matthew, J.G., William, K.S. and Resor, A.C. 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162(2): 157-168. https://doi.org/10.1023/A:1020385320738
  46. Norman, W.H.M., David, M., William, G.L. and Wilson, J.B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111(1): 112-118. https://doi.org/10.1111/j.0030-1299.2005.13886.x
  47. Omelko, A., Ukhvatkina, O. and Zhmerenetsky, A. 2016. Disturbance history and natural regeneration of an old-growth Korean pine-broadleaved forest in the Sikhote-Alin mountain range, Southeastern Russia. Forest Ecology and Management 360: 221-234. https://doi.org/10.1016/j.foreco.2015.10.036
  48. Park, H.C., Lee, J.H. and Lee, G.G. 2014. Predicting the suitable habitat of the Pinus pumila under climate change. Journal of Environmental Impact Assessment 23(5): 379-392. (in Korean with English abstract) https://doi.org/10.14249/eia.2014.23.5.379
  49. Park, S.G., Cho, H.J. and Lee, C.B. 2009. Vegetation types & floristic composition of native conifer forests in the ridge of the Baekdudaegan, South Korea. Journal of Korean Forestry Society 98(4): 464-471. (in Korean with English abstract)
  50. Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA. pp. 108.
  51. Smith, W.K., Germino, M.J., Hancock, T.E. and Johnson, D.M. 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiology 23(16): 1101-1112. https://doi.org/10.1093/treephys/23.16.1101
  52. Sun, S.C. and Chen, L.Z. 2000. A preliminary study on the ecological responses of seedlings to drought and simulated defoliation in Quercus liaotungensis. Acta Ecologica Sinica 20(5): 893-897. https://doi.org/10.3321/j.issn:1000-0933.2000.05.028
  53. Theurillat, J.P. and Guisan, A. 2001. Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50(1-2): 77-109. https://doi.org/10.1023/A:1010632015572
  54. Tilman D. 1982. Resource competition and community structure. Princeton University Press, pp. 296.
  55. Yun, C.W., Kim, H.J., Lee, B.C., Shin, J.H., Yang, H.M. and Lim, J.H. 2011. Characteristic community type classification of forest vegetation in South Korea. Journal of Korean Forest Society 100(3): 504-521. (in Korean with English abstract)
  56. Yun, J.H., Kim, J.H., Kim, S.Y., Park, C.H. and Lee, B.Y. 2012. Vertical distribution of vascular Plants in Osaek valley, Seoraksan national park by temperature gradient1a. Korean Journal Environment and Ecology 26(2): 156-185. (in Korean with English abstract)
  57. Zhang, L., Luo, T., Liu, X. and Kong, G. 2010. Altitudinal variations in seedling and sapling density and age structure of timberline tree species in the Sergyemla Mountains, southeast Tibet. Acta Ecologica Sinica 30(2): 76-80. https://doi.org/10.1016/j.chnaes.2010.03.005