References
- Proctor DM, Fehling KA, Shay EC, et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 2000;34:1576-1582. https://doi.org/10.1021/es9906002
- Radenovic A, Malina J, Sofilic T. Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013;2013:1-6. https://doi.org/10.1155/2013/198240
- Worldsteel Association. Steel industry by-products. Worldsteel Association Publishing Fact sheet [Internet]. c2016 [cited June 2016]. Available from: https://www.worldsteel.org/publications/fact-sheets.html.
- Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002;32:459-462. https://doi.org/10.1016/S0008-8846(01)00707-4
-
Doucet FJ. Effective
$CO_2$ -specific sequestration capacity of steel slags and variability in their leaching behavior in view of industrial mineral carbonation. Miner. Eng. 2010;23:262-269. https://doi.org/10.1016/j.mineng.2009.09.006 -
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM. A review of mineral carbonation technologies to sequester
$CO_2$ . Chem. Soc. Rev. 2014;43:8049-8080. https://doi.org/10.1039/C4CS00035H - Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE. Performance evaluation of aqueous carbonation for steel making slag: Process chemistry. Energ. Procedia 2013;37:115-121. https://doi.org/10.1016/j.egypro.2013.05.091
-
Polettini A, Pomi R, Stramazzo A.
$CO_2$ sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J. Environ. Manage. 2016;167:185-195. https://doi.org/10.1016/j.jenvman.2015.11.042 -
Uibu M, Kuusik R, Andreas L, Kirsimae K. The
$CO_2$ -binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energ. Procedia 2011;4:925-932. https://doi.org/10.1016/j.egypro.2011.01.138 -
Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto J, Charlet L. Mineral sequestration of
$CO_2$ by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 2009;161:1347-1354. https://doi.org/10.1016/j.jhazmat.2008.04.104 - Bernal SA, Nicolas RS, Provis JL, de Gutierrez RM, van Deventer JSJ. Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. 2014;47:693-707. https://doi.org/10.1617/s11527-013-0089-2
- Bernal SA. Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr. Build. Mater. 2015;98:217-226. https://doi.org/10.1016/j.conbuildmat.2015.08.013
- Ukwattage NL, Ranjith PG, Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 2017;97:15-22. https://doi.org/10.1016/j.measurement.2016.10.057
- Bade R, Oh S, Shin WS. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol. Environ. Saf. 2012;80:299-307. https://doi.org/10.1016/j.ecoenv.2012.03.019
- Capobianco O, Costa G, Thuy L, Magliocco E, Hartog N, Baciocchi R. Carbonation of stainless steel slag in the context of in situ Brownfield remediation. Miner. Eng. 2014;59:91-100. https://doi.org/10.1016/j.mineng.2013.11.005
-
Kim GM, Jang JG, Naeem F, Lee HK. Heavy metal leaching,
$CO_2$ uptake and mechanical characteristics of carbonated porous concrete with alkali-activated slag and bottom ash. Int. J. Concr. Struct. Mater. 2015;9:283-294. https://doi.org/10.1007/s40069-015-0111-x - Lee SH, Lee JS, Choi YJ, Kim JG. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009;77:1069-1075. https://doi.org/10.1016/j.chemosphere.2009.08.056
- Liu J, Xu D, Xiong L, Hills C, Carey P, Gardner K. Comparison of properties of traditional and accelerated carbonatedsolidified/ stabilized contaminated soils. J. Environ. Sci. 2008;20:593-598. https://doi.org/10.1016/S1001-0742(08)62099-9
- MOE. Primary investigation of soil pollution for metalliferous abandoned mines in 2010 (in Korean). Final Report of Ministry of Environment. 2010.
- Tae S-J. Immobilization of Cr(VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment. Met. Mater. Int. 2017;23:576-581. https://doi.org/10.1007/s12540-017-6576-1
- Chen M, Ma LQ. Comparison of three aqua regia digestion methods for twenty florida soils. Soil Sci. Soc. Am. J. 2001;65:491-499. https://doi.org/10.2136/sssaj2001.652491x
- Santos RM, Mertens G, Salman M, Cizer O, Gerven TV. Comparative study of aging, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J. Environ. Manage. 2013;128:807-821. https://doi.org/10.1016/j.jenvman.2013.06.033
- Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34:735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
- Oh S, Wang Q, Shin WS, Song DI. Sorption and desorption of PAHs in coastal sediment. Korean J. Chem. Eng. 2013;30:145-153. https://doi.org/10.1007/s11814-012-0101-5
- Smith JM, Van Ness HC, Abbott MM. Introduction to chemical engineering thermodynamics. 7th ed. New York: McGraw-Hill;2004.
- Gurtubay L, Gallastegui G, Elias A, Rojo N, Barona A. Accelerated aging of an EAF black slag by carbonation and percolation for long-term behavior assessment. J. Environ. Manage. 2014;140:45-50. https://doi.org/10.1016/j.jenvman.2014.03.011
- Chen Q, Zhang L, Ke Y, Hills C, Kang Y. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere 2009;74:758-764. https://doi.org/10.1016/j.chemosphere.2008.10.044
- Shwabkeh RA, Tutunji MF. Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl. Clay Sci. 2003;24:111-120. https://doi.org/10.1016/S0169-1317(03)00154-6
- USEPA. Method 1311: Toxicity characteristic leaching procedure. In: Test methods for the evaluation of solid waste: Laboratory manual physical chemical methods. SW-846. Washington D.C.: Office of Solid Waste; 2007.
- Quevauviller Ph, Rauret G, Lopez-Sanchez J-F, Rubio R, Ure A, Muntau H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ. 1997;205:223-234. https://doi.org/10.1016/S0048-9697(97)00205-2
- Rauret G, Lopez-Sanchez J-F, Sahuquillo A, et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA-extractable metal content. J. Environ. Monit. 2000;2:228-233. https://doi.org/10.1039/b001496f
- Carroll JJ, Slupsky JD, Mather AE. The solubility of carbon dioxide in water at low pressure. J. Phys. Chem. Ref. Data 1991;20:1201-1209. https://doi.org/10.1063/1.555900
-
Huijgen WJ, Witkamp GJ, Comans RNJ. Mineral
$CO_2$ sequestration by steel slag carbonation. Environ. Sci. Technol. 2005;39:9676-9682. https://doi.org/10.1021/es050795f -
Salman M, Cizer O, Pontikes Y, et al. Effect of accelerated carbonation on AOD stainless steel slag for its valorization as a
$CO_2$ -sequestering construction material. Chem. Eng. J. 2014;246:39-52. https://doi.org/10.1016/j.cej.2014.02.051 - Ko MS, Chen YL, Jiang JH. Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Constr. Build. Mater. 2015;98:286-293. https://doi.org/10.1016/j.conbuildmat.2015.08.051
-
Baciocchi R, Costa G, Polettini A, Pomi R. Influence of particle size on the carbonation of stainless steel slag for
$CO_2$ storage. Energy Procedia 2009;1:4859-4866. https://doi.org/10.1016/j.egypro.2009.02.314 - Boone MA, Nielsen P, Kock TD, Boone MN, Quahebeur M, Cnudde V. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. Environ. Sci. Technol. 2014;48:674-680. https://doi.org/10.1021/es402767q
- Chang E, Chen C, Chen Y, Pan S, Chiang P. Performance evaluation for carbonation of steel-making slags in a slurry reactor. J. Hazard. Mater. 2011;186:558-564. https://doi.org/10.1016/j.jhazmat.2010.11.038
- Li F, Bade R, Oh S, Shin WS. Immobilization of heavy metals in a contaminated soil using organic sludge char and other binders. Korean J. Chem. Eng. 2012;29:1362-1372. https://doi.org/10.1007/s11814-012-0015-2
- Singh TS, Pant KK. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. 2006;131:29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046
-
Bertos MF, Simons SJR, Hills CD, Carey PJ. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of
$CO_2$ . J. Hazard. Mater. 2004;112:193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019 - Makhloufi Z, Chettih M, Bederina M, Kadri EIH, Bouhicha M. Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars. Constr. Build. Mater. 2015;95: 647-657. https://doi.org/10.1016/j.conbuildmat.2015.07.050
Cited by
- Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review vol.54, 2020, https://doi.org/10.1016/j.jcou.2021.101738
- Treatment of ladle furnace slag by carbonation: Carbon dioxide sequestration, heavy metal immobilization, and strength enhancement vol.287, pp.p3, 2020, https://doi.org/10.1016/j.chemosphere.2021.132274