DOI QR코드

DOI QR Code

Application of aqueous carbonated slags in the immobilization of heavy metals in field-contaminated soils

  • Choi, Jiyeon (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Shin, Won Sik (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • Received : 2019.03.13
  • Accepted : 2019.05.16
  • Published : 2020.06.30

Abstract

The aqueous carbonation efficiencies of basic oxygen furnace (BOF) and ladle slags at various pressures, temperatures, and liquid-to-solid (L/S) ratios were investigated to determine optimum conditions. The maximum CO2 carbonated concentrations in slag (0.584 mmol/g for BOF slag and 1.038 mmol/g for ladle slag) was obtained at 10 bars, 40℃, and L/S = 5 mL/g-dry. The L/S ratio was the most critical parameter for carbonation. The effect of carbonated slag amendment on the immobilization of heavy metals in two field-contaminated soils was also investigated. The immobilization efficiencies evaluated by using the toxicity characteristic leaching procedure (TCLP) and the Standards, Measurements and Testing Programme (SM&T) were above 90% for both raw and carbonated slags for all soils. The TCLP-extractable heavy metals concentrations were below the criteria (5.0, 1.0 and 5.0 g/L for Pb, Cd, and Cr, respectively) after immobilizations with both slags except for Pb in soil B. The SM&T analysis showed the decrease in the exchangeable phase but the increase in residual phase after immobilization with raw and carbonated slags. The results of this study imply the promising potential of the carbonated slags on the immobilization of heavy metals in the field-contaminated soils.

Keywords

References

  1. Proctor DM, Fehling KA, Shay EC, et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 2000;34:1576-1582. https://doi.org/10.1021/es9906002
  2. Radenovic A, Malina J, Sofilic T. Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013;2013:1-6. https://doi.org/10.1155/2013/198240
  3. Worldsteel Association. Steel industry by-products. Worldsteel Association Publishing Fact sheet [Internet]. c2016 [cited June 2016]. Available from: https://www.worldsteel.org/publications/fact-sheets.html.
  4. Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002;32:459-462. https://doi.org/10.1016/S0008-8846(01)00707-4
  5. Doucet FJ. Effective $CO_2$-specific sequestration capacity of steel slags and variability in their leaching behavior in view of industrial mineral carbonation. Miner. Eng. 2010;23:262-269. https://doi.org/10.1016/j.mineng.2009.09.006
  6. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM. A review of mineral carbonation technologies to sequester $CO_2$. Chem. Soc. Rev. 2014;43:8049-8080. https://doi.org/10.1039/C4CS00035H
  7. Pan SY, Chiang PC, Chen YH, Chen CD, Lin HY, Chang EE. Performance evaluation of aqueous carbonation for steel making slag: Process chemistry. Energ. Procedia 2013;37:115-121. https://doi.org/10.1016/j.egypro.2013.05.091
  8. Polettini A, Pomi R, Stramazzo A. $CO_2$ sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J. Environ. Manage. 2016;167:185-195. https://doi.org/10.1016/j.jenvman.2015.11.042
  9. Uibu M, Kuusik R, Andreas L, Kirsimae K. The $CO_2$-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energ. Procedia 2011;4:925-932. https://doi.org/10.1016/j.egypro.2011.01.138
  10. Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto J, Charlet L. Mineral sequestration of $CO_2$ by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 2009;161:1347-1354. https://doi.org/10.1016/j.jhazmat.2008.04.104
  11. Bernal SA, Nicolas RS, Provis JL, de Gutierrez RM, van Deventer JSJ. Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. 2014;47:693-707. https://doi.org/10.1617/s11527-013-0089-2
  12. Bernal SA. Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr. Build. Mater. 2015;98:217-226. https://doi.org/10.1016/j.conbuildmat.2015.08.013
  13. Ukwattage NL, Ranjith PG, Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 2017;97:15-22. https://doi.org/10.1016/j.measurement.2016.10.057
  14. Bade R, Oh S, Shin WS. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol. Environ. Saf. 2012;80:299-307. https://doi.org/10.1016/j.ecoenv.2012.03.019
  15. Capobianco O, Costa G, Thuy L, Magliocco E, Hartog N, Baciocchi R. Carbonation of stainless steel slag in the context of in situ Brownfield remediation. Miner. Eng. 2014;59:91-100. https://doi.org/10.1016/j.mineng.2013.11.005
  16. Kim GM, Jang JG, Naeem F, Lee HK. Heavy metal leaching, $CO_2$ uptake and mechanical characteristics of carbonated porous concrete with alkali-activated slag and bottom ash. Int. J. Concr. Struct. Mater. 2015;9:283-294. https://doi.org/10.1007/s40069-015-0111-x
  17. Lee SH, Lee JS, Choi YJ, Kim JG. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009;77:1069-1075. https://doi.org/10.1016/j.chemosphere.2009.08.056
  18. Liu J, Xu D, Xiong L, Hills C, Carey P, Gardner K. Comparison of properties of traditional and accelerated carbonatedsolidified/ stabilized contaminated soils. J. Environ. Sci. 2008;20:593-598. https://doi.org/10.1016/S1001-0742(08)62099-9
  19. MOE. Primary investigation of soil pollution for metalliferous abandoned mines in 2010 (in Korean). Final Report of Ministry of Environment. 2010.
  20. Tae S-J. Immobilization of Cr(VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment. Met. Mater. Int. 2017;23:576-581. https://doi.org/10.1007/s12540-017-6576-1
  21. Chen M, Ma LQ. Comparison of three aqua regia digestion methods for twenty florida soils. Soil Sci. Soc. Am. J. 2001;65:491-499. https://doi.org/10.2136/sssaj2001.652491x
  22. Santos RM, Mertens G, Salman M, Cizer O, Gerven TV. Comparative study of aging, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J. Environ. Manage. 2013;128:807-821. https://doi.org/10.1016/j.jenvman.2013.06.033
  23. Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34:735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
  24. Oh S, Wang Q, Shin WS, Song DI. Sorption and desorption of PAHs in coastal sediment. Korean J. Chem. Eng. 2013;30:145-153. https://doi.org/10.1007/s11814-012-0101-5
  25. Smith JM, Van Ness HC, Abbott MM. Introduction to chemical engineering thermodynamics. 7th ed. New York: McGraw-Hill;2004.
  26. Gurtubay L, Gallastegui G, Elias A, Rojo N, Barona A. Accelerated aging of an EAF black slag by carbonation and percolation for long-term behavior assessment. J. Environ. Manage. 2014;140:45-50. https://doi.org/10.1016/j.jenvman.2014.03.011
  27. Chen Q, Zhang L, Ke Y, Hills C, Kang Y. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere 2009;74:758-764. https://doi.org/10.1016/j.chemosphere.2008.10.044
  28. Shwabkeh RA, Tutunji MF. Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl. Clay Sci. 2003;24:111-120. https://doi.org/10.1016/S0169-1317(03)00154-6
  29. USEPA. Method 1311: Toxicity characteristic leaching procedure. In: Test methods for the evaluation of solid waste: Laboratory manual physical chemical methods. SW-846. Washington D.C.: Office of Solid Waste; 2007.
  30. Quevauviller Ph, Rauret G, Lopez-Sanchez J-F, Rubio R, Ure A, Muntau H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ. 1997;205:223-234. https://doi.org/10.1016/S0048-9697(97)00205-2
  31. Rauret G, Lopez-Sanchez J-F, Sahuquillo A, et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA-extractable metal content. J. Environ. Monit. 2000;2:228-233. https://doi.org/10.1039/b001496f
  32. Carroll JJ, Slupsky JD, Mather AE. The solubility of carbon dioxide in water at low pressure. J. Phys. Chem. Ref. Data 1991;20:1201-1209. https://doi.org/10.1063/1.555900
  33. Huijgen WJ, Witkamp GJ, Comans RNJ. Mineral $CO_2$ sequestration by steel slag carbonation. Environ. Sci. Technol. 2005;39:9676-9682. https://doi.org/10.1021/es050795f
  34. Salman M, Cizer O, Pontikes Y, et al. Effect of accelerated carbonation on AOD stainless steel slag for its valorization as a $CO_2$-sequestering construction material. Chem. Eng. J. 2014;246:39-52. https://doi.org/10.1016/j.cej.2014.02.051
  35. Ko MS, Chen YL, Jiang JH. Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Constr. Build. Mater. 2015;98:286-293. https://doi.org/10.1016/j.conbuildmat.2015.08.051
  36. Baciocchi R, Costa G, Polettini A, Pomi R. Influence of particle size on the carbonation of stainless steel slag for $CO_2$ storage. Energy Procedia 2009;1:4859-4866. https://doi.org/10.1016/j.egypro.2009.02.314
  37. Boone MA, Nielsen P, Kock TD, Boone MN, Quahebeur M, Cnudde V. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. Environ. Sci. Technol. 2014;48:674-680. https://doi.org/10.1021/es402767q
  38. Chang E, Chen C, Chen Y, Pan S, Chiang P. Performance evaluation for carbonation of steel-making slags in a slurry reactor. J. Hazard. Mater. 2011;186:558-564. https://doi.org/10.1016/j.jhazmat.2010.11.038
  39. Li F, Bade R, Oh S, Shin WS. Immobilization of heavy metals in a contaminated soil using organic sludge char and other binders. Korean J. Chem. Eng. 2012;29:1362-1372. https://doi.org/10.1007/s11814-012-0015-2
  40. Singh TS, Pant KK. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. 2006;131:29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046
  41. Bertos MF, Simons SJR, Hills CD, Carey PJ. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of $CO_2$. J. Hazard. Mater. 2004;112:193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  42. Makhloufi Z, Chettih M, Bederina M, Kadri EIH, Bouhicha M. Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars. Constr. Build. Mater. 2015;95: 647-657. https://doi.org/10.1016/j.conbuildmat.2015.07.050

Cited by

  1. Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review vol.54, 2020, https://doi.org/10.1016/j.jcou.2021.101738
  2. Treatment of ladle furnace slag by carbonation: Carbon dioxide sequestration, heavy metal immobilization, and strength enhancement vol.287, pp.p3, 2020, https://doi.org/10.1016/j.chemosphere.2021.132274