DOI QR코드

DOI QR Code

Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach

  • Zmemla, Raja (Laboratory of Environmental Engineering and Ecotechnology, National Engineering School, University of Sfax) ;
  • Sdiri, Ali (Department of Georesources and Environment, National Engineering School, University of Sfax) ;
  • Naifar, Ikram (Laboratory of Environmental Engineering and Ecotechnology, National Engineering School, University of Sfax) ;
  • Benjdidia, Mounir (Department of Civil Engineering, National Engineering School, University of Sfax) ;
  • Elleuch, Boubaker (Laboratory of Environmental Engineering and Ecotechnology, National Engineering School, University of Sfax)
  • Received : 2019.02.07
  • Accepted : 2019.05.16
  • Published : 2020.06.30

Abstract

This study has been carried out to evaluate the leaching behavior of Tunisian phosphogypsum (PG) tailings in Skhira city (southern Tunisia). Two PG samples, including old and freshly deposited samples, were characterized in terms of physical, geotechnical, mechanical, chemical and mineralogical properties. Special attention was paid to their leaching behavior when subjected to standard leaching tests. Our results indicated that both samples are mainly composed of more than 31.85% CaO and 31.4% SO3, indicating the predominance of gypsum. This was further confirmed by XRD patterns that revealed the presence of characteristic reflections of gypsum, brushite, quartz and Maladrite. Compressive strength after 90 d exceeded 769 kPa, but still lower than that of natural sand (1,800 kPa). Leaching test was proposed as an appropriate method to determine the released contaminants from PG. The obtained results showed that Fluorine and Phosphorus are the most released elements from PG with 40 and 30%, respectively. The released Se, Cd, and Zn were the only trace elements that exceeded the threshold limits. It seemed that leached element concentrations were independent aging or particle size of the PG. Based on the assessment of leaching behavior, an integrated management approach of the PG deposits was proposed.

Keywords

References

  1. Koopman C, Witkamp G. Extraction of Lanthanides from the Phosphoric Acid Production Process to Gain a Purified Gypsum and a Valuable Lanthanide By-Product. Hydrometallurgy 2000;58:51-60. https://doi.org/10.1016/S0304-386X(00)00127-4
  2. Renteria-Villalobos M, Vioque I, Mantero J, Manjon G. Radiological, Chemical and Morphological Characterizations of Phosphate Rock and Phosphogypsum from Phosphoric Acid Factories in SW Spain. J. Hazard. Mater. 2010;181:193-203. https://doi.org/10.1016/j.jhazmat.2010.04.116
  3. Fuleihan NF. Phosphogypsum Disposal-The Pros & Cons of Wet Versus Dry Stacking. Procedia Eng. 2012; 46:195-205. https://doi.org/10.1016/j.proeng.2012.09.465
  4. Yun-jia W, Da-chao Z, Da-jun L, Yong-feng L, Xing-feng W. Environment Cumulative Effects of Coal Exploitation and Its Assessment. Procedia Earth Planet. Sci. 2009;1:1072-1080. https://doi.org/10.1016/j.proeps.2009.09.165
  5. Rutherford PM, Dudas MJ, Arocena JM. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci. Total Environ. 1996;180:201-209. https://doi.org/10.1016/0048-9697(95)04939-8
  6. Perez-Lopez R, Alvarez-Valero AM, Nieto JM. Changes in Mobility of Toxic Elements during the Production of Phosphoric Acid in the Fertilizer Industry of Huelva (SW Spain) and Environmental Impact of Phosphogypsum Wastes. J. Hazard. Mater. 2007;148:745-750. https://doi.org/10.1016/j.jhazmat.2007.06.068
  7. Yang J, Liu W, Zhang L, Xiao B. Preparation of Load-Bearing Building Materials from Autoclaved Phosphogypsum. Constr. Build. Mater. 2009;23:687-693. https://doi.org/10.1016/j.conbuildmat.2008.02.011
  8. Al-Hwaiti M, Al-Khashman O. Health Risk Assessment of Heavy Metals Contamination in Tomato and Green Pepper Plants Grown in Soils Amended with Phosphogypsum Waste Materials. Environ. Geochem. Health 2015;37:287-304. https://doi.org/10.1007/s10653-014-9646-z
  9. Perez-Lopez R, Castillo J, Sarmiento AM, Nieto JM. Assessment of Phosphogypsum Impact on the Salt-Marshes of the Tinto River (SW Spain): Role of Natural Attenuation Processes. Mar. Pollut. Bull. 2011;62:2787-2796. https://doi.org/10.1016/j.marpolbul.2011.09.008
  10. Perez-Lopez R, Macias F, Canovas CR, Sarmiento AM, Perez-Moreno SM. Pollutant Flows from a Phosphogypsum Disposal Area to an Estuarine Environment: An Insight from Geochemical Signatures. Sci. Total Environ. 2016;553:42-51. https://doi.org/10.1016/j.scitotenv.2016.02.070
  11. Papageorgiou F, Godelitsas A, Mertzimekis TJ, Xanthos S, Voulgaris N, Katsantonis G. Environment impact of Phosphogypsum stockpile in remediated schistos waste site (Piraeus, Greece) using a combination of y-Ray spectrometry with geographic information systems. Environ. Monit. Assess. 2016;188:133. https://doi.org/10.1007/s10661-016-5136-3
  12. Kassir LN, Darwish T, Shaban A, Lartiges B, Ouaini N. Mobility of Selected Trace Elements in Mediterranean Red Soil Amended with Phosphogypsum: Experimental Study. Environ. Monit. Assess. 2012;184:4397-4412. https://doi.org/10.1007/s10661-011-2272-7
  13. Maazoun H, Bouassida M. Phosphogypsum Management Challenges in Tunisia. In Contemporary Issues in Soil Mechanics. Springer, Cham, 2019;88-104.
  14. Spoann V, Fujiwara T, Seng B, Lay C. Municipal Solid Waste Management: Constraints and Opportunities to Improve Capacity of Local Government Authorities of Phnom Penh Capital. Waste Manag. Res. 2018;36:985-992. https://doi.org/10.1177/0734242X18785722
  15. Ajam L, Ben Ouezdou M, Felfoul HS, Mensi R El. Characterization of the Tunisian Phosphogypsum and Its Valorization in Clay Bricks. Constr. Build. Mater. 2009;23:3240-3247. https://doi.org/10.1016/j.conbuildmat.2009.05.009
  16. Moalla R, Gargouri M, Khmiri F, Kamoun L, Zairi M. Phosphogypsum Purification for Plaster Production: A Process Optimization Using Full Factorial Design. Environ. Eng. Res. 2017;23:36-45. https://doi.org/10.4491/eer.2017.055
  17. Szajerski P, Celinska J, Bem H, Gasiorowski A, Anyszka R, Dziugan P. Radium content and radon exhalation rate from sulfur polymer composites (SPC) based on mineral fillers. Constr. Build. Mater. 2019;198:390-398. https://doi.org/10.1016/j.conbuildmat.2018.11.262
  18. Chen Q, Zhang Q, Fourie A, Xin C. Utilization of Phosphogypsum and Phosphate Tailings for Cemented Paste Backfill. J. Environ. Manage. 2017;201:19-27. https://doi.org/10.1016/j.jenvman.2017.06.027
  19. Prasad MNV. Resource Potential of Natural and Synthetic Gypsum Waste. In Environ. Mater. Waste. Elsevier, 2016;307-337.
  20. Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M. The Application of Phosphogypsum in Agriculture and the Radiological Impact. J. Environ. Radioact. 2006;89:188-198. https://doi.org/10.1016/j.jenvrad.2006.05.005
  21. Abril JM, Garcia-Tenorio R, Perianez R, Enamorado SM, Andreu L, Delgado A. Occupational Dosimetric Assessment (Inhalation Pathway) from the Application of Phosphogypsum in Agriculture in South West Spain. J. Environ. Radioact. 2009;100:29-34. https://doi.org/10.1016/j.jenvrad.2008.09.006
  22. Crusciol CAC, Artigiani ACCA, Arf O, Carmeis Filho ACA, Soratto RP, Nascente AS, Alvarez RCF. Soil Fertility, Plant Nutrition, and Grain Yield of Upland Rice Affected by Surface Application of Lime, Silicate, and Phosphogypsum in a Tropical No-till System. CATENA 2016;137:87-99. https://doi.org/10.1016/j.catena.2015.09.009
  23. Hentati O, Abrantes N, Caetano AL, Bouguerra S, Goncalves F, Römbke J, Pereira R. Phosphogypsum as a Soil Fertilizer: Ecotoxicity of Amended Soil and Elutriates to Bacteria, Invertebrates, Algae and Plants. J. Hazard. Mater. 2015;294:80-89. https://doi.org/10.1016/j.jhazmat.2015.03.034
  24. Li J, Liu Z, Zhao W, Masud MM, Xu R. Alkaline Slag Is More Effective than Phosphogypsum in the Amelioration of Subsoil Acidity in an Ultisol Profile. Soil Tillage Res. 2015;149:21-32. https://doi.org/10.1016/j.still.2014.12.017
  25. Naifar I, Pereira F, Zmemla R, Bouaziz M, Elleuch B, Garcia D. Spatial Distribution and Contamination Assessment of Heavy Metals in Marine Sediments of the Southern Coast of Sfax, Gabes Gulf, Tunisia. Mar. Pollut. Bull. 2018;131:53-62. https://doi.org/10.1016/j.marpolbul.2018.03.048
  26. Hammas-Nasri I, Horchani-Naifer K, Ferid M, Barca D. Rare Earths Concentration from Phosphogypsum Waste by Two-Step Leaching Method. Int. J. Miner. Process. 2016;149:78-83. https://doi.org/10.1016/j.minpro.2016.02.011
  27. Blott SJ, Pye K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landforms 2001;26:1237-1248. https://doi.org/10.1002/esp.261
  28. ASTM International. ASTM D1883: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted. 2014.
  29. Eka Putri E, V Kameswara Rao NS, Mannan MA. Evaluation of Modulus of Elasticity and Modulus of Subgrade Reaction of Soils Using CBR Test. J. Civ. Eng. Res. 2012;2:34-40. https://doi.org/10.5923/j.jce.20120201.05
  30. Jiang Y, Wong LNY, Ren J. A Numerical Test Method of California Bearing Ratio on Graded Crushed Rocks Using Particle Flow Modeling. J. Traffic Transp. Eng. 2015;2:107-115. https://doi.org/10.1016/j.jtte.2015.02.004
  31. Ghosh A. Compaction Characteristics and Bearing Ratio of Pond Ash Stabilized with Lime and Phosphogypsum. J. Mater. Civ. Eng. 2010;22:343-351. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000028
  32. Morel J-C, Pkla A, Walker P. Compressive Strength Testing of Compressed Earth Blocks. Constr. Build. Mater. 2007;21:303-309. https://doi.org/10.1016/j.conbuildmat.2005.08.021
  33. Sfar Felfoul H, Clastres P, Ben Ouezdou M. Gestion Des Sous-Produits Industriels Et Developpement Durable : Cas Du Phosphogypse De Sfax (Tunisie). Sci. Technol. 2005;23:66-81.
  34. Pansu M, Gautheyrou J. Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods. Berlin: Springer-Verlag; 2006.
  35. Papaslioti E-M, Perez-Lopez R, Parviainen A, et al. Effects of Seawater Mixing on the Mobility of Trace Elements in Acid Phosphogypsum Leachates. Mar. Pollut. Bull. 2018;127:695-703. https://doi.org/10.1016/j.marpolbul.2018.01.001
  36. Bisone S, Gautier M, Chatain V, Blanc D. Spatial Distribution and Leaching Behavior of Pollutants from Phosphogypsum Stocked in a Gypstack: Geochemical Characterization and Modeling. J. Environ. Manage. 2017;193:567-575. https://doi.org/10.1016/j.jenvman.2017.02.055
  37. Ben Salah I, M'barek Jemai M Ben, Sdiri A, Boughdiri M, Karoui N. Chemical and Technological Characterization and Beneficiation of Jezza Sand (North West of Tunisia): Potentialities of Use in Industrial Fields. Int. J. Miner. Process. 2016;148:128-136. https://doi.org/10.1016/j.minpro.2016.01.016
  38. Rouis B. Contribution a l'utilisation de Sous-Produits Industriels : Application Au Cas Du Phosphogypse de Sfax (Tunisie), Universite Joseph-Fourier - Grenoble I, 1991.
  39. El Cadi A, Khaddor M, Lemee L, Ambles A. Journal of Environmental Solutions. J. Environ. Solut. 2012;1:34-40.
  40. Sfar Felfoul H, Clastres P, Ben Ouezdou M, Carles-Gibergues A. Properties and Perspectives of Valorization of Phosphogypsum the Example of Tunisia. In Proceedings of International Symposium on Environmental Pollution Control and Waste Management, Vol. 3. 2002;510-520.
  41. Schaeffner M. Premiers Resultats Relatifs Aux Conditions de Stockage et d'utilisation Du Phosphogypse Dans Les Remblais Routiers. LPC 1978; numero spe.
  42. Ben Salah I, Ben M'barek Jemaii M, Karoui-Yaakoub N, Sdiri A, Ben Ayed N, Boughdiri M. Properties of Debadib Evaporates (Northern Tunisia) for Potential Use in Industrial Fields. Open J. Geol. 2016;06:1525-1538. https://doi.org/10.4236/ojg.2016.612108
  43. Sdiri A, Bouaziz S, Sekrafi A. Properties of Mestaoua Evaporites (Southern Tunisia) for Plaster Industry. Carbonate. Evaporite. 2017;32:195-204. https://doi.org/10.1007/s13146-015-0287-9
  44. Walawalkar M, Nichol CK, Azimi G. Process Investigation of the Acid Leaching of Rare Earth Elements from Phosphogypsum Using HCl, $HNO_3$, and $H_2SO_4$. Hydrometallurgy 2016;166:195-204. https://doi.org/10.1016/j.hydromet.2016.06.008
  45. Manal N, Samdi A, Elabassi K, Gomina M, Moussa R, Diouri A, Khachani N, Talbi MA. Recycling of Industrial Wastes, Phosphogypsum and Fly Ash, in Building Materials. Iind Int. Semin. Invaco - Innov. Valor. Civ. Eng. Constr. Mater. 2012.
  46. Azouazi M, Ouahidi Y, Fakhi S, Andres Y, Abbe JC, Benmansour M. Natural Radioactivity in Phosphates, Phosphogypsum and Natural Waters in Morocco. J. Environ. Radioact. 2001.
  47. Nasrellah H, Yassine I, Hatimi B, et al. New Synthesis of Hydroxyapatite from Local Phosphogypsum. J. Mater. Environ. Sci. 2017.
  48. Gezer F, Turhan S, Ugur FA, Goren E, Kurt MZ, Ufuktepe Y. Natural Radionuclide Content of Disposed Phosphogypsum as TENORM Produced from Phosphorus Fertilizer Industry in Turkey. Ann. Nucl. Energy 2012;50:33-37. https://doi.org/10.1016/j.anucene.2012.07.018
  49. Macias F, Perez-Lopez R, Canovas CR, Carrero S, Cruz-Hernandez P. Environmental assessment and management of phosphogypsum according to european and United States of America Regulations. Procedia Earth Planet. Sci. 2017;17:666-669. https://doi.org/10.1016/j.proeps.2016.12.178
  50. Zmemla R, Naifer I, Benjdidia M, Elleuch B. Recycling of Tunisian Phosphogypsum as Road Material: Assessment of the Mechanical and Leaching Behavior. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. Springer Berlin Heidelberg, 2018; 1329-1332.
  51. Bourgier V. Influence Des Ions Monohydrogenophosphates et Fluorophosphates Sur Les Proprietes Des Phosphogypses et La Reactivite Des Phosphoplatres., Ecole Nationale Superieure des Mines de Saint-Etienne, 2007.
  52. Al-Hwaiti MS, Ranville JF, Ross PE. Bioavailability and Mobility of Trace Metals in Phosphogypsum from Aqaba and Eshidiya, Jordan. Chemie der Erde - Geochemistry 2010;70:283-291. https://doi.org/10.1016/j.chemer.2010.03.001
  53. Al-Masri MS, Amin Y, Ibrahim S, Al-Bich F. Distribution of Some Trace Metals in Syrian Phosphogypsum. Appl. Geochem. 2004;19:747-753. https://doi.org/10.1016/j.apgeochem.2003.09.014
  54. Shi Y, Gan L, Li X, He S, Sun C, Gao L. Dynamics of Metals in Backfill of a Phosphate Mine of Guiyang, China Using a Three-Step Sequential Extraction Technique. Chemosphere 2018;192:354-361. https://doi.org/10.1016/j.chemosphere.2017.10.161
  55. Lenz M, Hullebusch ED Van, Hommes G, Corvini PFX, Lens PNL. Selenate Removal in Methanogenic and Sulfate-Reducing Upflow Anaerobic Sludge Bed Reactors. Water Res. 2008;42:2184-2194. https://doi.org/10.1016/j.watres.2007.11.031
  56. Sdiri A, Higashi T, Bouaziz S, Benzina M. Synthesis and Characterization of Silica Gel from Siliceous Sands of Southern Tunisia. Arab. J. Chem. 2014;7:486-493. https://doi.org/10.1016/j.arabjc.2010.11.007
  57. Hammas I, Horchani-Naifer K, Ferid M. Solubility Study and Valorization of Phosphogypsum Salt Solution. Int. J. Miner. Process. 2013;123:87-93. https://doi.org/10.1016/j.minpro.2013.05.008
  58. Hammas-Nasri I, Horchani-Naifer K, Ferid M, Barca D. Production of a Rare Earths Concentrate after Phosphogypsum Treatment with Dietary NaCl and $Na_2CO_3$ Solutions. Miner. Eng. 2019;132:169-174. https://doi.org/10.1016/j.mineng.2018.12.013
  59. Vinati A, Mahanty B, Behera SK. Clay and Clay Minerals for Fluoride Removal from Water: A State-of-the-Art Review. Appl. Clay Sci. 2015;114:340-348. https://doi.org/10.1016/j.clay.2015.06.013
  60. Islam M, Patel RK. Evaluation of Removal Efficiency of Fluoride from Aqueous Solution Using Quick Lime. J. Hazard. Mater. 2007;143:303-310. https://doi.org/10.1016/j.jhazmat.2006.09.030
  61. European Comission. The landfill Directive Council Directive 1999/31/EC. 2005;04523371.500:27-49.
  62. Chen Q, Zhang Q, Qi C, Fourie A, Xiao C. Recycling Phosphogypsum and Construction Demolition Waste for Cemented Paste Backfill and Its Environmental Impact. J. Clean. Prod. 2018;186:418-429. https://doi.org/10.1016/j.jclepro.2018.03.131
  63. Szajerski P, Bogobowicz A, Bem H, Gasiorowski A. Quantitative Evaluation and Leaching Behavior of Cobalt Immobilized in Sulfur Polymer Concrete Composites Based on Lignite Fly Ash, Slag and Phosphogypsum. J. Clean. Prod. 2019;222:90-102. https://doi.org/10.1016/j.jclepro.2019.03.010
  64. Nizeviciene D, Vaiciukyniene D, Michalik B, Bonczyk M, Vaitkevicius V, Jusas V. The Treatment of Phosphogypsum with Zeolite to Use It in Binding Material. Constr. Build. Mater. 2018.
  65. Perez-Lopez R, Nieto JM, de la Rosa JD, Bolivar JP. Environmental Tracers for Elucidating the Weathering Process in a Phosphogypsum Disposal Site: Implications for Restoration. J. Hydrol. 2015;529:1313-1323. https://doi.org/10.1016/j.jhydrol.2015.08.056
  66. Manal N, Samdi A, Elabassi K, Gomina M, Moussa R. Recycling of industrial wastes, phosphogypsum and fly ash, in building materials - Recyclage de dechets industriels, phosphogypse et cendres volantes, dans des materiaux de construction. In: MATEC Web of Conferences; 3 September 2012; Rabat.
  67. Rashad AM. Phosphogypsum as a Construction Material. J. Clean. Prod. 2017;166:732-743. https://doi.org/10.1016/j.jclepro.2017.08.049
  68. Tscharntke T, Hochberg ME, Rand TA, Resh VH, Krauss J. Author Sequence and Credit for Contributions in Multiauthored Publications. PLoS Biol. 2007;5:e18. https://doi.org/10.1371/journal.pbio.0050018

Cited by

  1. Environmental Problems of Phosphogypsum Utilization vol.864, 2020, https://doi.org/10.4028/www.scientific.net/kem.864.108
  2. Environmental Problems of Phosphogypsum Utilization vol.864, 2020, https://doi.org/10.4028/www.scientific.net/kem.864.108
  3. Potential use of phosphogypsum in paving blocks vol.9, pp.3, 2021, https://doi.org/10.1680/jgrma.20.00001
  4. A phosphogypsum‐based road material with enhanced mechanical properties for sustainable environmental remediation vol.41, pp.1, 2022, https://doi.org/10.1002/ep.13732