DOI QR코드

DOI QR Code

Isolation of Ethanol-producing Thermotolerant Yeast Hanseniaspora opuntiae from Senecio cruentus

시네라리아 꽃으로부터 에탄올 생산성 및 내열성이 우수한 효모 Hanseniaspora opuntiae 균주 분리

  • Yoon, Jeong-Ah (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Do, Young-Eun (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Park, Eun-Hee (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Bae, Young-Woo (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Kim, Myoung-Dong (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University)
  • 윤정아 (강원대학교 바이오산업공학부) ;
  • 도영은 (강원대학교 바이오산업공학부) ;
  • 박은희 (강원대학교 바이오산업공학부) ;
  • 배영우 (강원대학교 바이오산업공학부) ;
  • 김명동 (강원대학교 바이오산업공학부)
  • Received : 2020.03.09
  • Accepted : 2020.05.27
  • Published : 2020.06.28

Abstract

The MBY/L6793 strain showing the highest ethanol yield of 0.48 ± 0.00 g ethanol/ g glucose was isolated from Senecio cruentus. Its ethanol yield was approximately 1.5 times that of the MBY/L6986 isolated from Callistephus chinensis. The strain was identified as Hanseniaspora opuntiae by sequence analysis of the 18S rRNA gene, and the sequenced gene was registered to the GenBank (MN859968). When grown at 40℃, the strain produced 3.82 ± 0.98 g ethanol from 20 g glucose and 10.05 ± 0.06 g ethanol from 60 g glucose, corresponding to approximately 2.45 and 5.74 times, respectively, compared to the control strain H. opuntiae KCCM50747. The MBY/L6793 strain was deposited to KCTC (Korean Collection for Type Culture) as KCTC37025.

다양한 꽃으로부터 분리된 160점의 효모 균주 중 시네라리아 꽃에서 분리된 MBY/L6793은 0.48 ± 0.00 g ethanol/g glucose 으로 분리된 균주 중 가장 우수한 에탄올 생산 수율을 나타냈으며, 과꽃으로부터 분리된 MBY/L6986 균주의 약 1.5배 수준이었다. MBY/L6793 균주의 18s rRNA 유전자의 염기서열을 분석한 결과 Hanseniaspora opuntiae로 동정되었으며, 분석된 염기서열은 GenBank (MN859968)에 등록하였다. 40℃에서 배양하였을 때, H. opuntiae MBY/L6793 균주는 20 g의 포도당으로부터 3.82 ± 0.98 g의 에탄올을 생산하였으며, 60g의 포도당으로부터 10.05 ± 0.06 g의 에탄올을 생산하여 대조구 균주인 H. opuntiae KCCM50747 균주의 약 2.45배와 5.74배 수준이었다. H. opuntiae MBY/L6793 균주는 한국생물자원센터에 KCTC37025로 기탁하였다.

Keywords

References

  1. Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS. 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 98: 2824-2828. https://doi.org/10.1016/j.biortech.2006.08.026
  2. Kadar Z, Szengyel Z, Reczey K. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crops Prod. 20: 103-110. https://doi.org/10.1016/j.indcrop.2003.12.015
  3. Xu Z, Huang F. 2014. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174: 43-62. https://doi.org/10.1007/s12010-014-1015-y
  4. Sun S, Sun S, Cao X, Sun R. 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199: 49-58. https://doi.org/10.1016/j.biortech.2015.08.061
  5. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. 2015. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. 33: 1091-1107. https://doi.org/10.1016/j.biotechadv.2014.12.002
  6. Tomas-Pejo E, Oliva JM, Ballesteros M, Olsson L. 2008. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 100: 1122-1131. https://doi.org/10.1002/bit.21849
  7. Pattanakittivorakul S, Lertwattanasakul N, Yamada M, Limtong S. 2019. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek. 112: 975-990. https://doi.org/10.1007/s10482-019-01230-6
  8. Auesukaree C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124: 133-142. https://doi.org/10.1016/j.jbiosc.2017.03.009
  9. Choudhary J, Singh S, Nain L. 2017. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J. Biosci. Bioeng. 123: 342-346. https://doi.org/10.1016/j.jbiosc.2016.10.007
  10. Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P. 2018. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz. J. Microbiol. 49: 378-391. https://doi.org/10.1016/j.bjm.2017.09.002
  11. Yuan SF, Guo GL, Hwang WS. 2017. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain. Microb. Biotechnol. 10: 1581-1590. https://doi.org/10.1111/1751-7915.12712
  12. Isono N, Hayakawa H, Usami A, Mishima T, Hisamatsu M. 2012. A comparative study of ethanol production by Issatchenkia orientalis strains under stress conditions. J. Biosci. Bioeng. 113: 76-78. https://doi.org/10.1016/j.jbiosc.2011.09.004
  13. Kwon HJ, Kim MD. 2016. Isolation of stress-tolerant Pichia farinosa from nuruk. Microbiol. Biotechnol. Lett. 44: 349-354. https://doi.org/10.4014/mbl.1607.07004
  14. Kang HW, Kim Y, Park JY, Min J, Choi GW. 2010. Development of thermostable fusant, CHY1612 for lignocellulosic simultaneous saccharification and fermentation. KSBB J. 25: 565-571.
  15. Hyun SH, Lee HB, Kim CM, Lee JS. 2013. New records of yeasts from wild flowers in coast near areas and inland areas, Korea. Korean J. Mycol. 41: 74-80. https://doi.org/10.4489/KJM.2013.41.2.74
  16. Ma Y, Liu Z, Yang Z, Li M, Liu J, Song J. 2013. Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunol. 4: 66-73.
  17. Baek SY, Lee YJ, Kim JH, Yeo SH. 2015. Isolation and characterization of wild yeasts for improving liquor flavor and quality. Microbiol. Biotechnol. Lett. 43: 56-64. https://doi.org/10.4014/mbl.1502.02007
  18. Guillamon JM, Sabate J, Barrio E, Cano J, Querol A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387-392. https://doi.org/10.1007/s002030050587
  19. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  20. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  21. Duncan DB. 1955. Multiple range and multiple F test. Biometrics. 11: 1-42. https://doi.org/10.2307/3001478
  22. Goshima T, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. 2013. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci. Biotechnol. Biochem. 77: 1505-1510. https://doi.org/10.1271/bbb.130173
  23. Hyun SH, Lee JG, Park WJ, Kim HK, Lee JS. 2014. Isolation and diversity of yeasts from fruits and flowers of orchard in Sinammyeon of Yesan-gun, Chungcheongnam-do, Korea. Korean J. Mycol. 42: 21-27. https://doi.org/10.4489/KJM.2014.42.1.21
  24. Luan Y, Zhang BQ, Duan CQ, Yan GL. 2018. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii. LWT-Food Sci. Technol. 92: 177-186. https://doi.org/10.1016/j.lwt.2018.02.004