DOI QR코드

DOI QR Code

이산요소법을 이용한 벌크 재료 시뮬레이션에 의한 덤프 트럭 데크 하중산출에 대한 연구

Structural Analysis of the Deck of a Dump Truck Based on Bulk Material Behavior using the Discrete Element Method

  • 유승훈 (현대자동차 연구개발본부) ;
  • 우호길 (충남대학교 기계공학부)
  • Ryu, Seung Hun (Automotive R&D Division, Hyundai Motor Group) ;
  • Woo, Ho Kil (Division of Mechanical Engineering, ChungNam Univ.)
  • 투고 : 2020.03.24
  • 심사 : 2020.04.23
  • 발행 : 2020.06.30

초록

덤프 트럭 데크의 경량화를 통한 연료 소비를 줄이고 에코 친화적인 설계를 위해서는 정확한 구조 분석이 필요하다. 지금까지 데크의 하중은 정수압 또는 토압 이론을 기반으로 계산되었다. 이 방법으로 데크의 하중 불균일을 계산할 수 없다. 하중 분포는 골재 입자의 크기 분포 및 상호 작용에 따라 달라진다. 이산요소법은 유한요소법보다 효과적으로 골재의 거동을 시뮬레이션할 수 있다. 본 논문에서는 벌크 밀도와 안식각을 측정하여 주요 특성을 얻었다. 15톤 덤프 트럭 데크는 범핑, 브레이킹 및 회전 시의 운동 조건을 적용하여 얻은 하중을 사용했다. 시뮬레이션은 이산요소해석 소프트웨어인 EDEM을 사용했다. 데크의 응력 및 변형 분포는 NASTRAN에 의해 계산되었다. 측정된 값과 비교하였고, 이를 통해 DEM 시뮬레이션의 결과는 수학적 가정에 의한 결과보다 정확함을 확인하였다.

To reduce fuel consumption by reducing the weight of the deck of a dump truck and to design an eco-friendly deck, accurate structural analysis is required. To date, the load on the deck has been calculated based on the hydrostatic pressure or by applying the earth pressure theory. However, these methods cannot be used to determine the non-uniformity of the load on the deck. Load distribution varies depending on the size distribution and interaction of aggregate particles. Compared with the finite element method, the discrete element method can simulate the behavior of aggregate particles more effectively. In this study, major properties were obtained by measuring bulk density and repose. The deck of a 15 ton dump truck was simulated using the obtained properties and bumping, breaking, and turning load conditions were applied. EDEM, which is a discrete element analysis software, was employed. The stress and strain distribution of the deck were calculated by NASTRAN and compared with the measured values. The study revealed that the results derived from a DEM simulation were more accurate than those based on mathematical assumption.

키워드

참고문헌

  1. Chen, Y., Zhu, F. (2011) The Finite Element Analysis and the Optimization Design of the Yj3128-type Dump Truck's Sub-Frames Based on ANSYS, Proc. Earth & Planet. Sci., 2, pp.133-138. https://doi.org/10.1016/j.proeps.2011.09.022
  2. Cundall, P.A., Strack, O.D. (1979) A Discrete Numberical Model for Granular Assemblies, Geotech., 29, pp.47-65. https://doi.org/10.1680/geot.1979.29.1.47
  3. Gu, Z., Mi, C., Wang, Y., Jiang, J. (2012) A-Type Frame Fatigue Life Estimation of a Mining Dump Truck based on Modal Stress Recovery Method, Eng. Fail. Anal., 26, pp.89-99. https://doi.org/10.1016/j.engfailanal.2012.07.004
  4. Hertz, H. (1882) On the Contact of Elastic Solids, J. Reine Angew. Math., 92, pp.156-171.
  5. Hwang, S.P., Park, S.H., Sohn, D.W. (2017) Effects of Design Parameters of Mixer Blades on Particle Mixing Performance, J. Comput. Struct. Eng. Inst. Korea, 30(4), pp.363-370. https://doi.org/10.7734/COSEIK.2017.30.4.363
  6. Jiang, X.L., Wu, Z. (2016) Dump Truck Cylinder Bracket Finite Optimization Design, Int. Conf. Robots & Intelligent System (ICRIS), pp.171-174.
  7. Liu, X., Liu, D., Cheng, X., Si, M. (2014) Analysis of the Crack of Heavy Dump Truck Cargo Body Floor, Appl. Mech. & Mater., 723, pp.3-6. https://doi.org/10.4028/www.scientific.net/AMM.723.3
  8. Mindlin, R.D. (1949) Compliance of Elastic Bodies in Contact, J. Appl. Mech, 16, pp.259-268. https://doi.org/10.1115/1.4009973
  9. Mindlin, R.D., Deresiewicz, H. (1953) Elastic Spheres in Contact under Varying Oblique Forces. Trans, ASME, J. Appl. Mech, 20.
  10. Tsuji, Y., Tanaka, T., Ishida, T. (1992) Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe, Powder Technol., 71, pp.239-250. https://doi.org/10.1016/0032-5910(92)88030-L
  11. Yun, T.Y., Yoo, P.J., Kim, Y.B. (2014) Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates, Int.J. Highw. Eng, 16(1), pp.21-30.
  12. Zheng, S., Cheng, K., Wang, J., Liao, Q., Liu, X., Liu, W. (2015) Failure Analysis of Frame Crack on a Wide-Body Mining Dump Truck, Eng. Fail. Anal., 48, pp.153-165. https://doi.org/10.1016/j.engfailanal.2014.11.013