DOI QR코드

DOI QR Code

요추부 척추관 협착증의 후방 감압술에서 후방 인대의 보존 여부와 술 후 척추 불안정성과의 연관성: 포트홀(Port-Hole) 감압술과 후궁 아전절제술 간 비교 연구

Preservation of the Posterior Ligaments for Preventing Postoperative Spinal Instability in Posterior Decompression of Lumbar Spinal Stenosis: Comparative Study between Port-Hole Decompression and Subtotal Laminectomy

  • Jung, Yu-Hun (Department of Orthopedic Surgery, Bundang Jeasaeng General Hospital) ;
  • Na, Hwa-Yeop (Department of Orthopedic Surgery, Bundang Jeasaeng General Hospital) ;
  • Choe, Saehun (Department of Orthopedic Surgery, Bundang Jeasaeng General Hospital) ;
  • Kim, Jin (Department of Orthopedic Surgery, Bundang Jeasaeng General Hospital) ;
  • Lee, Joon-Ha (Department of Orthopedic Surgery, Bundang Jeasaeng General Hospital)
  • 투고 : 2019.01.21
  • 심사 : 2019.05.20
  • 발행 : 2020.02.28

초록

목적: 요추부 척추관 협착증에서의 후방 감압술 시 극간인대 및 극상인대의 보존이 술 후 척추 불안정성의 예방에 미치는 영향에 대하여 밝히고자 했다. 대상 및 방법: 2014년 3월부터 2017년 3월까지 요추부 척추관 협착증에서 후방 감압술을 시행하고 1년 이상 추시관찰한 83명의 환자를 후향적으로 연구하였다. 대상자들을 수술의 종류에 따라 포트홀 감압술을 시행한 56명의 환자는 그룹 A로, 후궁 아전절제술을 시행한 27명의 환자는 그룹 B로 분류하였다. 임상적 결과를 평가하기 위해 Oswestry disability index (ODI), 요통과 방사통에 대한 시각통증점수(visual analogue scale, VAS), 신경성 간헐적 파행(neurogenic intermittent claudication, NIC) 전 보행거리가 수술 전후로 측정되었다. 영상의학적 결과를 평가하기 위해 수술 전 및 수술 후 매 6개월마다 직립상태에서 측면 및 굴곡-신전 단순 방사선 사진을 촬영해 전위 정도(slip percentage), 역동적 전위 정도(dynamic slip percentage), 각변위(angular displacement), 역동적 각변위(dynamic angular displacement)를 측정하였다. 결과: ODI (그룹 A에서 28.1에서 12.8로 호전; 그룹 B에서 27.3에서 12.3으로 호전), 요통에 대한 VAS (그룹 A에서 7.0에서 2.6로 호전; 그룹 B에서 7.7에서 3.2로 호전), 방사통에 대한 VAS (그룹 A에서 8.5에서 2.8로 호전; 그룹 B에서 8.7에서 2.9로 호전), 그리고 NIC 전 보행 거리(그룹 A에서 118.4 m에서 1,496.2 m로 증가; 그룹 B에서 127.6 m에서 1,481.6 m로 증가)는 두 그룹 모두에서 호전되었다. 다른 영상의학적 결과들에서 유의한 차이가 없었던 반면 역동적 각변위는 술 후 두 그룹간에 유의한 차이를 보였다(그룹 A에서 6.2°에서 6.7°로 증가; 그룹 B에서 6.5°에서 8.4°로 증가; p-value=0.019). 결론: 요추부 척추관 협착증에서의 후방 감압술시 극간인대 및 극상인대를 포함한 후방 인대의 제거는 술 후 역동적 각변위의 증가를 초래하며 후방 인대를 보존하는 포트홀(port-hole) 감압술을 통해 이를 예방할 수 있다.

Purpose: To determine if sparing the interspinous and supraspinous ligaments during posterior decompression for lumbar spinal stenosis is significant in preventing postoperative spinal instability. Materials and Methods: A total of 83 patients who underwent posterior decompression for lumbar spinal stenosis between March 2014 and March 2017 with a minimum one-year follow-up period, were studied retrospectively. The subjects were divided into two groups according to the type of surgery. Fifty-six patients who underwent posterior decompression by the port-hole technique were grouped as A, while 27 patients who underwent posterior decompression by a subtotal laminectomy grouped as B. To evaluate the clinical results, the Oswestry disability index (ODI), visual analogue scale (VAS) for both back pain (VAS-B) and radiating pain (VAS-R), and the walking distance of neurogenic intermittent claudication (NIC) were checked pre- and postoperatively, while simple radiographs of the lateral and flexion-extension view in the standing position were taken preoperatively and then every six months after to measure anteroposterior slippage (slip percentage), the difference in anteroposterior slippage between flexion and extension (dynamic slip percentage), angular displacement, and the difference in angular displacement between flexion and extension (dynamic angular displacement) to evaluate the radiological results. Results: The ODI (from 28.1 to 12.8 in group A, from 27.3 to 12.3 in group B), VAS-B (from 7.0 to 2.6 in group A, from 7.7 to 3.2 in group B), VAS-R (from 8.5 to 2.8 in group A, from 8.7 to 2.9 in group B), and walking distance of NIC (from 118.4 m to 1,496.2 m in group A, from 127.6 m to 1,481.6 m in group B) were improved in both groups. On the other hand, while the other radiologic results showed no differences, the dynamic angular displacement between both groups showed a significant difference postoperatively (group A from 6.2° to 6.7°, group B from 6.5° to 8.4°, p-value=0.019). Conclusion: Removal of the posterior ligaments, including the interspinous and supraspinous ligaments, during posterior decompression of lumbar spinal stenosis can cause a postoperative increase in dynamic angular displacement, which can be prevented by the port-hole technique, which spares these posterior ligaments.

키워드

참고문헌

  1. Kleeman TJ, Hiscoe AC, Berg EE. Patient outcomes after minimally destabilizing lumbar stenosis decompression: the "Port-Hole" technique. Spine (Phila Pa 1976). 2000;25:865-70. https://doi.org/10.1097/00007632-200004010-00016
  2. Chatani K. A novel surgical approach to the lumbar spine involving hemilateral split-off of the spinous process to preserve the multifidus muscle: technical note. J Neurosurg Spine. 2016;24:694-9. https://doi.org/10.3171/2015.5.SPINE141074
  3. Reinshagen C, Ruess D, Molcanyi M, et al. A novel translaminar crossover approach for pathologies in the lumbar hidden zone. J Clin Neurosci. 2015;22:1030-5. https://doi.org/10.1016/j.jocn.2015.01.013
  4. Kakiuchi M, Fukushima W. Impact of spinous process integrity on ten to twelve-year outcomes after posterior decompression for lumbar spinal stenosis: study of open-door laminoplasty using a spinous process-splitting approach. J Bone Joint Surg Am. 2015;97:1667-77. https://doi.org/10.2106/JBJS.N.01370
  5. Jalil Y, Carvalho C, Becker R. Long-term clinical and radiological postoperative outcomes after an interspinous microdecompression of degenerative lumbar spinal stenosis. Spine (Phila Pa 1976). 2014;39:368-73. https://doi.org/10.1097/BRS.0000000000000168
  6. Adachi K, Futami T, Ebihara A, et al. Spinal canal enlargement procedure by restorative laminoplasty for the treatment of lumbar canal stenosis. Spine J. 2003;3:471-8. https://doi.org/10.1016/S1529-9430(03)00149-9
  7. Iguchi T, Kurihara A, Nakayama J, Sato K, Kurosaka M, Yamasaki K. Minimum 10-year outcome of decompressive laminectomy for degenerative lumbar spinal stenosis. Spine (Phila Pa 1976). 2000;25:1754-9. https://doi.org/10.1097/00007632-200007150-00003
  8. Aizawa T, Ozawa H, Kusakabe T, et al. Reoperation rates after fenestration for lumbar spinal canal stenosis: a 20-year period survival function method analysis. Eur Spine J. 2015;24:381-7. https://doi.org/10.1007/s00586-014-3479-4
  9. Henky J, Yasuda M, Arifin MZ, Takayasu M, Faried A. Trumpet laminectomy microdecompression for lumbal canal stenosis. Asian Spine J. 2014;8:667-74. https://doi.org/10.4184/asj.2014.8.5.667
  10. Thome C, Zevgaridis D, Leheta O, et al. Outcome after less-invasive decompression of lumbar spinal stenosis: a randomized comparison of unilateral laminotomy, bilateral laminotomy, and laminectomy. J Neurosurg Spine. 2005;3:129-41. https://doi.org/10.3171/spi.2005.3.2.0129
  11. Song WS, Na HY, Son EY, Choe S, Lee JH. The clinical results after posterior ligaments preserving fenestration in lumbar spinal stenosis: the port-hole decompression. J Korean Orthop Assoc. 2018;53:44-50. https://doi.org/10.4055/jkoa.2018.53.1.44
  12. Schizas C, Theumann N, Burn A, et al. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976). 2010;35:1919-24. https://doi.org/10.1097/BRS.0b013e3181d359bd
  13. Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976). 1990;15:1142-7. https://doi.org/10.1097/00007632-199011010-00011
  14. Natarajan RN, Andersson GB, Patwardhan AG, Andriacchi TP. Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. J Biomech Eng. 1999;121:215-21. https://doi.org/10.1115/1.2835106
  15. Mullin BB, Rea GL, Irsik R, Catton M, Miner ME. The effect of postlaminectomy spinal instability on the outcome of lumbar spinal stenosis patients. J Spinal Disord. 1996;9:107-16.
  16. Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine (Phila Pa 1976). 1995;20:887-900. https://doi.org/10.1097/00007632-199504150-00003
  17. Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine (Phila Pa 1976). 2004;29:1208-16. https://doi.org/10.1097/00007632-200406010-00010
  18. Yang JC, Kim SG, Kim TW, Park KH. Analysis of factors contributing to postoperative spinal instability after lumbar decompression for spinal stenosis. Korean J Spine. 2013;10:149-54. https://doi.org/10.14245/kjs.2013.10.3.149